Metamath Proof Explorer


Theorem dfnelbr2

Description: Alternate definition of the negated membership as binary relation. (Proposed by BJ, 27-Dec-2021.) (Contributed by AV, 27-Dec-2021)

Ref Expression
Assertion dfnelbr2 = V × V E

Proof

Step Hyp Ref Expression
1 difopab x y | x V y V x y | x y = x y | x V y V ¬ x y
2 df-xp V × V = x y | x V y V
3 df-eprel E = x y | x y
4 2 3 difeq12i V × V E = x y | x V y V x y | x y
5 df-nelbr = x y | ¬ x y
6 vex x V
7 vex y V
8 6 7 pm3.2i x V y V
9 8 biantrur ¬ x y x V y V ¬ x y
10 9 opabbii x y | ¬ x y = x y | x V y V ¬ x y
11 5 10 eqtri = x y | x V y V ¬ x y
12 1 4 11 3eqtr4ri = V × V E