Metamath Proof Explorer


Theorem dfnelbr2

Description: Alternate definition of the negated membership as binary relation. (Proposed by BJ, 27-Dec-2021.) (Contributed by AV, 27-Dec-2021)

Ref Expression
Assertion dfnelbr2 =V×VE

Proof

Step Hyp Ref Expression
1 difopab xy|xVyVxy|xy=xy|xVyV¬xy
2 df-xp V×V=xy|xVyV
3 df-eprel E=xy|xy
4 2 3 difeq12i V×VE=xy|xVyVxy|xy
5 df-nelbr =xy|¬xy
6 vex xV
7 vex yV
8 6 7 pm3.2i xVyV
9 8 biantrur ¬xyxVyV¬xy
10 9 opabbii xy|¬xy=xy|xVyV¬xy
11 5 10 eqtri =xy|xVyV¬xy
12 1 4 11 3eqtr4ri =V×VE