Description: The binary relation of a set not being a member of another set. (Contributed by AV, 26-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | nelbr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 _∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq12 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 ∈ 𝑦 ↔ 𝐴 ∈ 𝐵 ) ) | |
2 | 1 | notbid | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ¬ 𝑥 ∈ 𝑦 ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
3 | df-nelbr | ⊢ _∉ = { 〈 𝑥 , 𝑦 〉 ∣ ¬ 𝑥 ∈ 𝑦 } | |
4 | 2 3 | brabga | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 _∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵 ) ) |