Description: The binary relation of a set not being a member of another set. (Contributed by AV, 26-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nelbr | |- ( ( A e. V /\ B e. W ) -> ( A e// B <-> -. A e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq12 | |- ( ( x = A /\ y = B ) -> ( x e. y <-> A e. B ) ) |
|
| 2 | 1 | notbid | |- ( ( x = A /\ y = B ) -> ( -. x e. y <-> -. A e. B ) ) |
| 3 | df-nelbr | |- e// = { <. x , y >. | -. x e. y } |
|
| 4 | 2 3 | brabga | |- ( ( A e. V /\ B e. W ) -> ( A e// B <-> -. A e. B ) ) |