Metamath Proof Explorer


Theorem nelbrim

Description: If a set is related to another set by the negated membership relation, then it is not a member of the other set. The other direction of the implication is not generally true, because if A is a proper class, then -. A e. B would be true, but not A e// B . (Contributed by AV, 26-Dec-2021)

Ref Expression
Assertion nelbrim
|- ( A e// B -> -. A e. B )

Proof

Step Hyp Ref Expression
1 df-nelbr
 |-  e// = { <. x , y >. | -. x e. y }
2 1 relopabiv
 |-  Rel e//
3 2 brrelex12i
 |-  ( A e// B -> ( A e. _V /\ B e. _V ) )
4 nelbr
 |-  ( ( A e. _V /\ B e. _V ) -> ( A e// B <-> -. A e. B ) )
5 4 biimpd
 |-  ( ( A e. _V /\ B e. _V ) -> ( A e// B -> -. A e. B ) )
6 3 5 mpcom
 |-  ( A e// B -> -. A e. B )