Metamath Proof Explorer


Theorem nelbrnel

Description: A set is related to another set by the negated membership relation iff it is not a member of the other set. (Contributed by AV, 26-Dec-2021)

Ref Expression
Assertion nelbrnel
|- ( ( A e. V /\ B e. W ) -> ( A e// B <-> A e/ B ) )

Proof

Step Hyp Ref Expression
1 nelbr
 |-  ( ( A e. V /\ B e. W ) -> ( A e// B <-> -. A e. B ) )
2 df-nel
 |-  ( A e/ B <-> -. A e. B )
3 1 2 bitr4di
 |-  ( ( A e. V /\ B e. W ) -> ( A e// B <-> A e/ B ) )