Description: A set is related to another set by the negated membership relation iff it is not a member of the other set. (Contributed by AV, 26-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | nelbrnel | |- ( ( A e. V /\ B e. W ) -> ( A e// B <-> A e/ B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelbr | |- ( ( A e. V /\ B e. W ) -> ( A e// B <-> -. A e. B ) ) |
|
2 | df-nel | |- ( A e/ B <-> -. A e. B ) |
|
3 | 1 2 | bitr4di | |- ( ( A e. V /\ B e. W ) -> ( A e// B <-> A e/ B ) ) |