Description: A set is related to another set by the negated membership relation iff it is not a member of the other set. (Contributed by AV, 26-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nelbrnel | |- ( ( A e. V /\ B e. W ) -> ( A e// B <-> A e/ B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nelbr | |- ( ( A e. V /\ B e. W ) -> ( A e// B <-> -. A e. B ) ) | |
| 2 | df-nel | |- ( A e/ B <-> -. A e. B ) | |
| 3 | 1 2 | bitr4di | |- ( ( A e. V /\ B e. W ) -> ( A e// B <-> A e/ B ) ) |