Description: If a set is related to another set by the negated membership relation, then it is not a member of the other set. (Contributed by AV, 26-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nelbrnelim | |- ( A e// B -> A e/ B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nelbrim | |- ( A e// B -> -. A e. B ) | |
| 2 | df-nel | |- ( A e/ B <-> -. A e. B ) | |
| 3 | 1 2 | sylibr | |- ( A e// B -> A e/ B ) |