Description: If a set is related to another set by the negated membership relation, then it is not a member of the other set. (Contributed by AV, 26-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | nelbrnelim | |- ( A e// B -> A e/ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelbrim | |- ( A e// B -> -. A e. B ) |
|
2 | df-nel | |- ( A e/ B <-> -. A e. B ) |
|
3 | 1 2 | sylibr | |- ( A e// B -> A e/ B ) |