Metamath Proof Explorer


Definition df-nq

Description: Define class of positive fractions. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-2.2 of Gleason p. 117. (Contributed by NM, 16-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion df-nq
|- Q. = { x e. ( N. X. N. ) | A. y e. ( N. X. N. ) ( x ~Q y -> -. ( 2nd ` y ) 

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnq
 |-  Q.
1 vx
 |-  x
2 cnpi
 |-  N.
3 2 2 cxp
 |-  ( N. X. N. )
4 vy
 |-  y
5 1 cv
 |-  x
6 ceq
 |-  ~Q
7 4 cv
 |-  y
8 5 7 6 wbr
 |-  x ~Q y
9 c2nd
 |-  2nd
10 7 9 cfv
 |-  ( 2nd ` y )
11 clti
 |-  
12 5 9 cfv
 |-  ( 2nd ` x )
13 10 12 11 wbr
 |-  ( 2nd ` y ) 
14 13 wn
 |-  -. ( 2nd ` y ) 
15 8 14 wi
 |-  ( x ~Q y -> -. ( 2nd ` y ) 
16 15 4 3 wral
 |-  A. y e. ( N. X. N. ) ( x ~Q y -> -. ( 2nd ` y ) 
17 16 1 3 crab
 |-  { x e. ( N. X. N. ) | A. y e. ( N. X. N. ) ( x ~Q y -> -. ( 2nd ` y ) 
18 0 17 wceq
 |-  Q. = { x e. ( N. X. N. ) | A. y e. ( N. X. N. ) ( x ~Q y -> -. ( 2nd ` y )