| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cnv |
|- NrmCVec |
| 1 |
|
vg |
|- g |
| 2 |
|
vs |
|- s |
| 3 |
|
vn |
|- n |
| 4 |
1
|
cv |
|- g |
| 5 |
2
|
cv |
|- s |
| 6 |
4 5
|
cop |
|- <. g , s >. |
| 7 |
|
cvc |
|- CVecOLD |
| 8 |
6 7
|
wcel |
|- <. g , s >. e. CVecOLD |
| 9 |
3
|
cv |
|- n |
| 10 |
4
|
crn |
|- ran g |
| 11 |
|
cr |
|- RR |
| 12 |
10 11 9
|
wf |
|- n : ran g --> RR |
| 13 |
|
vx |
|- x |
| 14 |
13
|
cv |
|- x |
| 15 |
14 9
|
cfv |
|- ( n ` x ) |
| 16 |
|
cc0 |
|- 0 |
| 17 |
15 16
|
wceq |
|- ( n ` x ) = 0 |
| 18 |
|
cgi |
|- GId |
| 19 |
4 18
|
cfv |
|- ( GId ` g ) |
| 20 |
14 19
|
wceq |
|- x = ( GId ` g ) |
| 21 |
17 20
|
wi |
|- ( ( n ` x ) = 0 -> x = ( GId ` g ) ) |
| 22 |
|
vy |
|- y |
| 23 |
|
cc |
|- CC |
| 24 |
22
|
cv |
|- y |
| 25 |
24 14 5
|
co |
|- ( y s x ) |
| 26 |
25 9
|
cfv |
|- ( n ` ( y s x ) ) |
| 27 |
|
cabs |
|- abs |
| 28 |
24 27
|
cfv |
|- ( abs ` y ) |
| 29 |
|
cmul |
|- x. |
| 30 |
28 15 29
|
co |
|- ( ( abs ` y ) x. ( n ` x ) ) |
| 31 |
26 30
|
wceq |
|- ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) |
| 32 |
31 22 23
|
wral |
|- A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) |
| 33 |
14 24 4
|
co |
|- ( x g y ) |
| 34 |
33 9
|
cfv |
|- ( n ` ( x g y ) ) |
| 35 |
|
cle |
|- <_ |
| 36 |
|
caddc |
|- + |
| 37 |
24 9
|
cfv |
|- ( n ` y ) |
| 38 |
15 37 36
|
co |
|- ( ( n ` x ) + ( n ` y ) ) |
| 39 |
34 38 35
|
wbr |
|- ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) |
| 40 |
39 22 10
|
wral |
|- A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) |
| 41 |
21 32 40
|
w3a |
|- ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) |
| 42 |
41 13 10
|
wral |
|- A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) |
| 43 |
8 12 42
|
w3a |
|- ( <. g , s >. e. CVecOLD /\ n : ran g --> RR /\ A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) ) |
| 44 |
43 1 2 3
|
coprab |
|- { <. <. g , s >. , n >. | ( <. g , s >. e. CVecOLD /\ n : ran g --> RR /\ A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) ) } |
| 45 |
0 44
|
wceq |
|- NrmCVec = { <. <. g , s >. , n >. | ( <. g , s >. e. CVecOLD /\ n : ran g --> RR /\ A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) ) } |