Description: A normed vector space is a normed module which is also a vector space. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-nvc | |- NrmVec = ( NrmMod i^i LVec ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cnvc | |- NrmVec |
|
1 | cnlm | |- NrmMod |
|
2 | clvec | |- LVec |
|
3 | 1 2 | cin | |- ( NrmMod i^i LVec ) |
4 | 0 3 | wceq | |- NrmVec = ( NrmMod i^i LVec ) |