Metamath Proof Explorer


Definition df-nvc

Description: A normed vector space is a normed module which is also a vector space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion df-nvc
|- NrmVec = ( NrmMod i^i LVec )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnvc
 |-  NrmVec
1 cnlm
 |-  NrmMod
2 clvec
 |-  LVec
3 1 2 cin
 |-  ( NrmMod i^i LVec )
4 0 3 wceq
 |-  NrmVec = ( NrmMod i^i LVec )