Description: Define the function/constant operation map. The definition is designed so that if R is a binary operation, then oFC R is the analogous operation on functions and constants. (Contributed by Thierry Arnoux, 21-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ofc | |- oFC R = ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) R c ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | |- R |
|
| 1 | 0 | cofc | |- oFC R |
| 2 | vf | |- f |
|
| 3 | cvv | |- _V |
|
| 4 | vc | |- c |
|
| 5 | vx | |- x |
|
| 6 | 2 | cv | |- f |
| 7 | 6 | cdm | |- dom f |
| 8 | 5 | cv | |- x |
| 9 | 8 6 | cfv | |- ( f ` x ) |
| 10 | 4 | cv | |- c |
| 11 | 9 10 0 | co | |- ( ( f ` x ) R c ) |
| 12 | 5 7 11 | cmpt | |- ( x e. dom f |-> ( ( f ` x ) R c ) ) |
| 13 | 2 4 3 3 12 | cmpo | |- ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) R c ) ) ) |
| 14 | 1 13 | wceq | |- oFC R = ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) R c ) ) ) |