Metamath Proof Explorer


Definition df-ofc

Description: Define the function/constant operation map. The definition is designed so that if R is a binary operation, then oFC R is the analogous operation on functions and constants. (Contributed by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion df-ofc
|- oFC R = ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) R c ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR
 |-  R
1 0 cofc
 |-  oFC R
2 vf
 |-  f
3 cvv
 |-  _V
4 vc
 |-  c
5 vx
 |-  x
6 2 cv
 |-  f
7 6 cdm
 |-  dom f
8 5 cv
 |-  x
9 8 6 cfv
 |-  ( f ` x )
10 4 cv
 |-  c
11 9 10 0 co
 |-  ( ( f ` x ) R c )
12 5 7 11 cmpt
 |-  ( x e. dom f |-> ( ( f ` x ) R c ) )
13 2 4 3 3 12 cmpo
 |-  ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) R c ) ) )
14 1 13 wceq
 |-  oFC R = ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) R c ) ) )