Description: Define the function/constant operation map. The definition is designed so that if R is a binary operation, then oFC R is the analogous operation on functions and constants. (Contributed by Thierry Arnoux, 21-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-ofc | |- oFC R = ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) R c ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cR | |- R |
|
1 | 0 | cofc | |- oFC R |
2 | vf | |- f |
|
3 | cvv | |- _V |
|
4 | vc | |- c |
|
5 | vx | |- x |
|
6 | 2 | cv | |- f |
7 | 6 | cdm | |- dom f |
8 | 5 | cv | |- x |
9 | 8 6 | cfv | |- ( f ` x ) |
10 | 4 | cv | |- c |
11 | 9 10 0 | co | |- ( ( f ` x ) R c ) |
12 | 5 7 11 | cmpt | |- ( x e. dom f |-> ( ( f ` x ) R c ) ) |
13 | 2 4 3 3 12 | cmpo | |- ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) R c ) ) ) |
14 | 1 13 | wceq | |- oFC R = ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) R c ) ) ) |