Metamath Proof Explorer


Theorem ofceq

Description: Equality theorem for function/constant operation. (Contributed by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Assertion ofceq
|- ( R = S -> oFC R = oFC S )

Proof

Step Hyp Ref Expression
1 oveq
 |-  ( R = S -> ( ( f ` x ) R c ) = ( ( f ` x ) S c ) )
2 1 mpteq2dv
 |-  ( R = S -> ( x e. dom f |-> ( ( f ` x ) R c ) ) = ( x e. dom f |-> ( ( f ` x ) S c ) ) )
3 2 mpoeq3dv
 |-  ( R = S -> ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) R c ) ) ) = ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) S c ) ) ) )
4 df-ofc
 |-  oFC R = ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) R c ) ) )
5 df-ofc
 |-  oFC S = ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) S c ) ) )
6 3 4 5 3eqtr4g
 |-  ( R = S -> oFC R = oFC S )