Step |
Hyp |
Ref |
Expression |
1 |
|
oveq |
|- ( R = S -> ( ( f ` x ) R c ) = ( ( f ` x ) S c ) ) |
2 |
1
|
mpteq2dv |
|- ( R = S -> ( x e. dom f |-> ( ( f ` x ) R c ) ) = ( x e. dom f |-> ( ( f ` x ) S c ) ) ) |
3 |
2
|
mpoeq3dv |
|- ( R = S -> ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) R c ) ) ) = ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) S c ) ) ) ) |
4 |
|
df-ofc |
|- oFC R = ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) R c ) ) ) |
5 |
|
df-ofc |
|- oFC S = ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) S c ) ) ) |
6 |
3 4 5
|
3eqtr4g |
|- ( R = S -> oFC R = oFC S ) |