| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ofcfval.1 |
|- ( ph -> F Fn A ) |
| 2 |
|
ofcfval.2 |
|- ( ph -> A e. V ) |
| 3 |
|
ofcfval.3 |
|- ( ph -> C e. W ) |
| 4 |
|
ofcfval.6 |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |
| 5 |
|
df-ofc |
|- oFC R = ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) R c ) ) ) |
| 6 |
5
|
a1i |
|- ( ph -> oFC R = ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) R c ) ) ) ) |
| 7 |
|
simprl |
|- ( ( ph /\ ( f = F /\ c = C ) ) -> f = F ) |
| 8 |
7
|
dmeqd |
|- ( ( ph /\ ( f = F /\ c = C ) ) -> dom f = dom F ) |
| 9 |
7
|
fveq1d |
|- ( ( ph /\ ( f = F /\ c = C ) ) -> ( f ` x ) = ( F ` x ) ) |
| 10 |
|
simprr |
|- ( ( ph /\ ( f = F /\ c = C ) ) -> c = C ) |
| 11 |
9 10
|
oveq12d |
|- ( ( ph /\ ( f = F /\ c = C ) ) -> ( ( f ` x ) R c ) = ( ( F ` x ) R C ) ) |
| 12 |
8 11
|
mpteq12dv |
|- ( ( ph /\ ( f = F /\ c = C ) ) -> ( x e. dom f |-> ( ( f ` x ) R c ) ) = ( x e. dom F |-> ( ( F ` x ) R C ) ) ) |
| 13 |
|
fnex |
|- ( ( F Fn A /\ A e. V ) -> F e. _V ) |
| 14 |
1 2 13
|
syl2anc |
|- ( ph -> F e. _V ) |
| 15 |
3
|
elexd |
|- ( ph -> C e. _V ) |
| 16 |
1
|
fndmd |
|- ( ph -> dom F = A ) |
| 17 |
16 2
|
eqeltrd |
|- ( ph -> dom F e. V ) |
| 18 |
17
|
mptexd |
|- ( ph -> ( x e. dom F |-> ( ( F ` x ) R C ) ) e. _V ) |
| 19 |
6 12 14 15 18
|
ovmpod |
|- ( ph -> ( F oFC R C ) = ( x e. dom F |-> ( ( F ` x ) R C ) ) ) |
| 20 |
16
|
eleq2d |
|- ( ph -> ( x e. dom F <-> x e. A ) ) |
| 21 |
20
|
pm5.32i |
|- ( ( ph /\ x e. dom F ) <-> ( ph /\ x e. A ) ) |
| 22 |
21 4
|
sylbi |
|- ( ( ph /\ x e. dom F ) -> ( F ` x ) = B ) |
| 23 |
22
|
oveq1d |
|- ( ( ph /\ x e. dom F ) -> ( ( F ` x ) R C ) = ( B R C ) ) |
| 24 |
16 23
|
mpteq12dva |
|- ( ph -> ( x e. dom F |-> ( ( F ` x ) R C ) ) = ( x e. A |-> ( B R C ) ) ) |
| 25 |
19 24
|
eqtrd |
|- ( ph -> ( F oFC R C ) = ( x e. A |-> ( B R C ) ) ) |