Metamath Proof Explorer


Theorem ofcfval

Description: Value of an operation applied to a function and a constant. (Contributed by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Hypotheses ofcfval.1
|- ( ph -> F Fn A )
ofcfval.2
|- ( ph -> A e. V )
ofcfval.3
|- ( ph -> C e. W )
ofcfval.6
|- ( ( ph /\ x e. A ) -> ( F ` x ) = B )
Assertion ofcfval
|- ( ph -> ( F oFC R C ) = ( x e. A |-> ( B R C ) ) )

Proof

Step Hyp Ref Expression
1 ofcfval.1
 |-  ( ph -> F Fn A )
2 ofcfval.2
 |-  ( ph -> A e. V )
3 ofcfval.3
 |-  ( ph -> C e. W )
4 ofcfval.6
 |-  ( ( ph /\ x e. A ) -> ( F ` x ) = B )
5 df-ofc
 |-  oFC R = ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) R c ) ) )
6 5 a1i
 |-  ( ph -> oFC R = ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) R c ) ) ) )
7 simprl
 |-  ( ( ph /\ ( f = F /\ c = C ) ) -> f = F )
8 7 dmeqd
 |-  ( ( ph /\ ( f = F /\ c = C ) ) -> dom f = dom F )
9 7 fveq1d
 |-  ( ( ph /\ ( f = F /\ c = C ) ) -> ( f ` x ) = ( F ` x ) )
10 simprr
 |-  ( ( ph /\ ( f = F /\ c = C ) ) -> c = C )
11 9 10 oveq12d
 |-  ( ( ph /\ ( f = F /\ c = C ) ) -> ( ( f ` x ) R c ) = ( ( F ` x ) R C ) )
12 8 11 mpteq12dv
 |-  ( ( ph /\ ( f = F /\ c = C ) ) -> ( x e. dom f |-> ( ( f ` x ) R c ) ) = ( x e. dom F |-> ( ( F ` x ) R C ) ) )
13 fnex
 |-  ( ( F Fn A /\ A e. V ) -> F e. _V )
14 1 2 13 syl2anc
 |-  ( ph -> F e. _V )
15 3 elexd
 |-  ( ph -> C e. _V )
16 1 fndmd
 |-  ( ph -> dom F = A )
17 16 2 eqeltrd
 |-  ( ph -> dom F e. V )
18 17 mptexd
 |-  ( ph -> ( x e. dom F |-> ( ( F ` x ) R C ) ) e. _V )
19 6 12 14 15 18 ovmpod
 |-  ( ph -> ( F oFC R C ) = ( x e. dom F |-> ( ( F ` x ) R C ) ) )
20 16 eleq2d
 |-  ( ph -> ( x e. dom F <-> x e. A ) )
21 20 pm5.32i
 |-  ( ( ph /\ x e. dom F ) <-> ( ph /\ x e. A ) )
22 21 4 sylbi
 |-  ( ( ph /\ x e. dom F ) -> ( F ` x ) = B )
23 22 oveq1d
 |-  ( ( ph /\ x e. dom F ) -> ( ( F ` x ) R C ) = ( B R C ) )
24 16 23 mpteq12dva
 |-  ( ph -> ( x e. dom F |-> ( ( F ` x ) R C ) ) = ( x e. A |-> ( B R C ) ) )
25 19 24 eqtrd
 |-  ( ph -> ( F oFC R C ) = ( x e. A |-> ( B R C ) ) )