Metamath Proof Explorer


Theorem ofcfval

Description: Value of an operation applied to a function and a constant. (Contributed by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Hypotheses ofcfval.1 φ F Fn A
ofcfval.2 φ A V
ofcfval.3 φ C W
ofcfval.6 φ x A F x = B
Assertion ofcfval φ F fc R C = x A B R C

Proof

Step Hyp Ref Expression
1 ofcfval.1 φ F Fn A
2 ofcfval.2 φ A V
3 ofcfval.3 φ C W
4 ofcfval.6 φ x A F x = B
5 df-ofc fc R = f V , c V x dom f f x R c
6 5 a1i φ fc R = f V , c V x dom f f x R c
7 simprl φ f = F c = C f = F
8 7 dmeqd φ f = F c = C dom f = dom F
9 7 fveq1d φ f = F c = C f x = F x
10 simprr φ f = F c = C c = C
11 9 10 oveq12d φ f = F c = C f x R c = F x R C
12 8 11 mpteq12dv φ f = F c = C x dom f f x R c = x dom F F x R C
13 fnex F Fn A A V F V
14 1 2 13 syl2anc φ F V
15 3 elexd φ C V
16 1 fndmd φ dom F = A
17 16 2 eqeltrd φ dom F V
18 17 mptexd φ x dom F F x R C V
19 6 12 14 15 18 ovmpod φ F fc R C = x dom F F x R C
20 16 eleq2d φ x dom F x A
21 20 pm5.32i φ x dom F φ x A
22 21 4 sylbi φ x dom F F x = B
23 22 oveq1d φ x dom F F x R C = B R C
24 16 23 mpteq12dva φ x dom F F x R C = x A B R C
25 19 24 eqtrd φ F fc R C = x A B R C