Step |
Hyp |
Ref |
Expression |
1 |
|
ofcfval.1 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
2 |
|
ofcfval.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
ofcfval.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) |
4 |
|
ofcfval.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
5 |
|
df-ofc |
⊢ ∘f/c 𝑅 = ( 𝑓 ∈ V , 𝑐 ∈ V ↦ ( 𝑥 ∈ dom 𝑓 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 𝑐 ) ) ) |
6 |
5
|
a1i |
⊢ ( 𝜑 → ∘f/c 𝑅 = ( 𝑓 ∈ V , 𝑐 ∈ V ↦ ( 𝑥 ∈ dom 𝑓 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 𝑐 ) ) ) ) |
7 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑐 = 𝐶 ) ) → 𝑓 = 𝐹 ) |
8 |
7
|
dmeqd |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑐 = 𝐶 ) ) → dom 𝑓 = dom 𝐹 ) |
9 |
7
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑐 = 𝐶 ) ) → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
10 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑐 = 𝐶 ) ) → 𝑐 = 𝐶 ) |
11 |
9 10
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑐 = 𝐶 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝑅 𝑐 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) |
12 |
8 11
|
mpteq12dv |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑐 = 𝐶 ) ) → ( 𝑥 ∈ dom 𝑓 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 𝑐 ) ) = ( 𝑥 ∈ dom 𝐹 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) ) |
13 |
|
fnex |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐹 ∈ V ) |
14 |
1 2 13
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
15 |
3
|
elexd |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
16 |
1
|
fndmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
17 |
16 2
|
eqeltrd |
⊢ ( 𝜑 → dom 𝐹 ∈ 𝑉 ) |
18 |
17
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐹 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) ∈ V ) |
19 |
6 12 14 15 18
|
ovmpod |
⊢ ( 𝜑 → ( 𝐹 ∘f/c 𝑅 𝐶 ) = ( 𝑥 ∈ dom 𝐹 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) ) |
20 |
16
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴 ) ) |
21 |
20
|
pm5.32i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ↔ ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ) |
22 |
21 4
|
sylbi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
23 |
22
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) = ( 𝐵 𝑅 𝐶 ) ) |
24 |
16 23
|
mpteq12dva |
⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐹 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) |
25 |
19 24
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ∘f/c 𝑅 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) |