Metamath Proof Explorer


Theorem ofcval

Description: Evaluate a function/constant operation at a point. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcfval.1 ( 𝜑𝐹 Fn 𝐴 )
ofcfval.2 ( 𝜑𝐴𝑉 )
ofcfval.3 ( 𝜑𝐶𝑊 )
ofcval.6 ( ( 𝜑𝑋𝐴 ) → ( 𝐹𝑋 ) = 𝐵 )
Assertion ofcval ( ( 𝜑𝑋𝐴 ) → ( ( 𝐹f/c 𝑅 𝐶 ) ‘ 𝑋 ) = ( 𝐵 𝑅 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ofcfval.1 ( 𝜑𝐹 Fn 𝐴 )
2 ofcfval.2 ( 𝜑𝐴𝑉 )
3 ofcfval.3 ( 𝜑𝐶𝑊 )
4 ofcval.6 ( ( 𝜑𝑋𝐴 ) → ( 𝐹𝑋 ) = 𝐵 )
5 eqidd ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) = ( 𝐹𝑥 ) )
6 1 2 3 5 ofcfval ( 𝜑 → ( 𝐹f/c 𝑅 𝐶 ) = ( 𝑥𝐴 ↦ ( ( 𝐹𝑥 ) 𝑅 𝐶 ) ) )
7 6 adantr ( ( 𝜑𝑋𝐴 ) → ( 𝐹f/c 𝑅 𝐶 ) = ( 𝑥𝐴 ↦ ( ( 𝐹𝑥 ) 𝑅 𝐶 ) ) )
8 simpr ( ( ( 𝜑𝑋𝐴 ) ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 )
9 8 fveq2d ( ( ( 𝜑𝑋𝐴 ) ∧ 𝑥 = 𝑋 ) → ( 𝐹𝑥 ) = ( 𝐹𝑋 ) )
10 9 oveq1d ( ( ( 𝜑𝑋𝐴 ) ∧ 𝑥 = 𝑋 ) → ( ( 𝐹𝑥 ) 𝑅 𝐶 ) = ( ( 𝐹𝑋 ) 𝑅 𝐶 ) )
11 simpr ( ( 𝜑𝑋𝐴 ) → 𝑋𝐴 )
12 ovexd ( ( 𝜑𝑋𝐴 ) → ( ( 𝐹𝑋 ) 𝑅 𝐶 ) ∈ V )
13 7 10 11 12 fvmptd ( ( 𝜑𝑋𝐴 ) → ( ( 𝐹f/c 𝑅 𝐶 ) ‘ 𝑋 ) = ( ( 𝐹𝑋 ) 𝑅 𝐶 ) )
14 4 oveq1d ( ( 𝜑𝑋𝐴 ) → ( ( 𝐹𝑋 ) 𝑅 𝐶 ) = ( 𝐵 𝑅 𝐶 ) )
15 13 14 eqtrd ( ( 𝜑𝑋𝐴 ) → ( ( 𝐹f/c 𝑅 𝐶 ) ‘ 𝑋 ) = ( 𝐵 𝑅 𝐶 ) )