Step |
Hyp |
Ref |
Expression |
1 |
|
ofcfval.1 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
2 |
|
ofcfval.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
ofcfval.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) |
4 |
|
ofcval.6 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) = 𝐵 ) |
5 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
6 |
1 2 3 5
|
ofcfval |
⊢ ( 𝜑 → ( 𝐹 ∘f/c 𝑅 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ∘f/c 𝑅 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) ) |
8 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) |
9 |
8
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑥 = 𝑋 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
10 |
9
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑥 = 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) = ( ( 𝐹 ‘ 𝑋 ) 𝑅 𝐶 ) ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ 𝐴 ) |
12 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) 𝑅 𝐶 ) ∈ V ) |
13 |
7 10 11 12
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ∘f/c 𝑅 𝐶 ) ‘ 𝑋 ) = ( ( 𝐹 ‘ 𝑋 ) 𝑅 𝐶 ) ) |
14 |
4
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) 𝑅 𝐶 ) = ( 𝐵 𝑅 𝐶 ) ) |
15 |
13 14
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ∘f/c 𝑅 𝐶 ) ‘ 𝑋 ) = ( 𝐵 𝑅 𝐶 ) ) |