Metamath Proof Explorer


Theorem ofcfn

Description: The function operation produces a function. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcfval.1 ( 𝜑𝐹 Fn 𝐴 )
ofcfval.2 ( 𝜑𝐴𝑉 )
ofcfval.3 ( 𝜑𝐶𝑊 )
Assertion ofcfn ( 𝜑 → ( 𝐹f/c 𝑅 𝐶 ) Fn 𝐴 )

Proof

Step Hyp Ref Expression
1 ofcfval.1 ( 𝜑𝐹 Fn 𝐴 )
2 ofcfval.2 ( 𝜑𝐴𝑉 )
3 ofcfval.3 ( 𝜑𝐶𝑊 )
4 ovex ( ( 𝐹𝑥 ) 𝑅 𝐶 ) ∈ V
5 eqid ( 𝑥𝐴 ↦ ( ( 𝐹𝑥 ) 𝑅 𝐶 ) ) = ( 𝑥𝐴 ↦ ( ( 𝐹𝑥 ) 𝑅 𝐶 ) )
6 4 5 fnmpti ( 𝑥𝐴 ↦ ( ( 𝐹𝑥 ) 𝑅 𝐶 ) ) Fn 𝐴
7 eqidd ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) = ( 𝐹𝑥 ) )
8 1 2 3 7 ofcfval ( 𝜑 → ( 𝐹f/c 𝑅 𝐶 ) = ( 𝑥𝐴 ↦ ( ( 𝐹𝑥 ) 𝑅 𝐶 ) ) )
9 8 fneq1d ( 𝜑 → ( ( 𝐹f/c 𝑅 𝐶 ) Fn 𝐴 ↔ ( 𝑥𝐴 ↦ ( ( 𝐹𝑥 ) 𝑅 𝐶 ) ) Fn 𝐴 ) )
10 6 9 mpbiri ( 𝜑 → ( 𝐹f/c 𝑅 𝐶 ) Fn 𝐴 )