Step |
Hyp |
Ref |
Expression |
1 |
|
ofcfval.1 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
2 |
|
ofcfval.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
ofcfval.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) |
4 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ∈ V |
5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) |
6 |
4 5
|
fnmpti |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) Fn 𝐴 |
7 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
8 |
1 2 3 7
|
ofcfval |
⊢ ( 𝜑 → ( 𝐹 ∘f/c 𝑅 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) ) |
9 |
8
|
fneq1d |
⊢ ( 𝜑 → ( ( 𝐹 ∘f/c 𝑅 𝐶 ) Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) Fn 𝐴 ) ) |
10 |
6 9
|
mpbiri |
⊢ ( 𝜑 → ( 𝐹 ∘f/c 𝑅 𝐶 ) Fn 𝐴 ) |