Metamath Proof Explorer


Theorem ofcfn

Description: The function operation produces a function. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcfval.1
|- ( ph -> F Fn A )
ofcfval.2
|- ( ph -> A e. V )
ofcfval.3
|- ( ph -> C e. W )
Assertion ofcfn
|- ( ph -> ( F oFC R C ) Fn A )

Proof

Step Hyp Ref Expression
1 ofcfval.1
 |-  ( ph -> F Fn A )
2 ofcfval.2
 |-  ( ph -> A e. V )
3 ofcfval.3
 |-  ( ph -> C e. W )
4 ovex
 |-  ( ( F ` x ) R C ) e. _V
5 eqid
 |-  ( x e. A |-> ( ( F ` x ) R C ) ) = ( x e. A |-> ( ( F ` x ) R C ) )
6 4 5 fnmpti
 |-  ( x e. A |-> ( ( F ` x ) R C ) ) Fn A
7 eqidd
 |-  ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) )
8 1 2 3 7 ofcfval
 |-  ( ph -> ( F oFC R C ) = ( x e. A |-> ( ( F ` x ) R C ) ) )
9 8 fneq1d
 |-  ( ph -> ( ( F oFC R C ) Fn A <-> ( x e. A |-> ( ( F ` x ) R C ) ) Fn A ) )
10 6 9 mpbiri
 |-  ( ph -> ( F oFC R C ) Fn A )