Step |
Hyp |
Ref |
Expression |
1 |
|
ofcfval.1 |
|- ( ph -> F Fn A ) |
2 |
|
ofcfval.2 |
|- ( ph -> A e. V ) |
3 |
|
ofcfval.3 |
|- ( ph -> C e. W ) |
4 |
|
ovex |
|- ( ( F ` x ) R C ) e. _V |
5 |
|
eqid |
|- ( x e. A |-> ( ( F ` x ) R C ) ) = ( x e. A |-> ( ( F ` x ) R C ) ) |
6 |
4 5
|
fnmpti |
|- ( x e. A |-> ( ( F ` x ) R C ) ) Fn A |
7 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
8 |
1 2 3 7
|
ofcfval |
|- ( ph -> ( F oFC R C ) = ( x e. A |-> ( ( F ` x ) R C ) ) ) |
9 |
8
|
fneq1d |
|- ( ph -> ( ( F oFC R C ) Fn A <-> ( x e. A |-> ( ( F ` x ) R C ) ) Fn A ) ) |
10 |
6 9
|
mpbiri |
|- ( ph -> ( F oFC R C ) Fn A ) |