Metamath Proof Explorer


Theorem ofcfeqd2

Description: Equality theorem for function/constant operation value. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcfeqd2.1
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. B )
ofcfeqd2.2
|- ( ( ph /\ y e. B ) -> ( y R C ) = ( y P C ) )
ofcfeqd2.3
|- ( ph -> F Fn A )
ofcfeqd2.4
|- ( ph -> A e. V )
ofcfeqd2.5
|- ( ph -> C e. W )
Assertion ofcfeqd2
|- ( ph -> ( F oFC R C ) = ( F oFC P C ) )

Proof

Step Hyp Ref Expression
1 ofcfeqd2.1
 |-  ( ( ph /\ x e. A ) -> ( F ` x ) e. B )
2 ofcfeqd2.2
 |-  ( ( ph /\ y e. B ) -> ( y R C ) = ( y P C ) )
3 ofcfeqd2.3
 |-  ( ph -> F Fn A )
4 ofcfeqd2.4
 |-  ( ph -> A e. V )
5 ofcfeqd2.5
 |-  ( ph -> C e. W )
6 oveq1
 |-  ( y = ( F ` x ) -> ( y R C ) = ( ( F ` x ) R C ) )
7 oveq1
 |-  ( y = ( F ` x ) -> ( y P C ) = ( ( F ` x ) P C ) )
8 6 7 eqeq12d
 |-  ( y = ( F ` x ) -> ( ( y R C ) = ( y P C ) <-> ( ( F ` x ) R C ) = ( ( F ` x ) P C ) ) )
9 2 ralrimiva
 |-  ( ph -> A. y e. B ( y R C ) = ( y P C ) )
10 9 adantr
 |-  ( ( ph /\ x e. A ) -> A. y e. B ( y R C ) = ( y P C ) )
11 8 10 1 rspcdva
 |-  ( ( ph /\ x e. A ) -> ( ( F ` x ) R C ) = ( ( F ` x ) P C ) )
12 11 mpteq2dva
 |-  ( ph -> ( x e. A |-> ( ( F ` x ) R C ) ) = ( x e. A |-> ( ( F ` x ) P C ) ) )
13 eqidd
 |-  ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) )
14 3 4 5 13 ofcfval
 |-  ( ph -> ( F oFC R C ) = ( x e. A |-> ( ( F ` x ) R C ) ) )
15 3 4 5 13 ofcfval
 |-  ( ph -> ( F oFC P C ) = ( x e. A |-> ( ( F ` x ) P C ) ) )
16 12 14 15 3eqtr4d
 |-  ( ph -> ( F oFC R C ) = ( F oFC P C ) )