Step |
Hyp |
Ref |
Expression |
1 |
|
ofcfeqd2.1 |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. B ) |
2 |
|
ofcfeqd2.2 |
|- ( ( ph /\ y e. B ) -> ( y R C ) = ( y P C ) ) |
3 |
|
ofcfeqd2.3 |
|- ( ph -> F Fn A ) |
4 |
|
ofcfeqd2.4 |
|- ( ph -> A e. V ) |
5 |
|
ofcfeqd2.5 |
|- ( ph -> C e. W ) |
6 |
|
oveq1 |
|- ( y = ( F ` x ) -> ( y R C ) = ( ( F ` x ) R C ) ) |
7 |
|
oveq1 |
|- ( y = ( F ` x ) -> ( y P C ) = ( ( F ` x ) P C ) ) |
8 |
6 7
|
eqeq12d |
|- ( y = ( F ` x ) -> ( ( y R C ) = ( y P C ) <-> ( ( F ` x ) R C ) = ( ( F ` x ) P C ) ) ) |
9 |
2
|
ralrimiva |
|- ( ph -> A. y e. B ( y R C ) = ( y P C ) ) |
10 |
9
|
adantr |
|- ( ( ph /\ x e. A ) -> A. y e. B ( y R C ) = ( y P C ) ) |
11 |
8 10 1
|
rspcdva |
|- ( ( ph /\ x e. A ) -> ( ( F ` x ) R C ) = ( ( F ` x ) P C ) ) |
12 |
11
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( ( F ` x ) R C ) ) = ( x e. A |-> ( ( F ` x ) P C ) ) ) |
13 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
14 |
3 4 5 13
|
ofcfval |
|- ( ph -> ( F oFC R C ) = ( x e. A |-> ( ( F ` x ) R C ) ) ) |
15 |
3 4 5 13
|
ofcfval |
|- ( ph -> ( F oFC P C ) = ( x e. A |-> ( ( F ` x ) P C ) ) ) |
16 |
12 14 15
|
3eqtr4d |
|- ( ph -> ( F oFC R C ) = ( F oFC P C ) ) |