Metamath Proof Explorer


Theorem ofcfeqd2

Description: Equality theorem for function/constant operation value. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcfeqd2.1 φ x A F x B
ofcfeqd2.2 φ y B y R C = y P C
ofcfeqd2.3 φ F Fn A
ofcfeqd2.4 φ A V
ofcfeqd2.5 φ C W
Assertion ofcfeqd2 φ F fc R C = F fc P C

Proof

Step Hyp Ref Expression
1 ofcfeqd2.1 φ x A F x B
2 ofcfeqd2.2 φ y B y R C = y P C
3 ofcfeqd2.3 φ F Fn A
4 ofcfeqd2.4 φ A V
5 ofcfeqd2.5 φ C W
6 oveq1 y = F x y R C = F x R C
7 oveq1 y = F x y P C = F x P C
8 6 7 eqeq12d y = F x y R C = y P C F x R C = F x P C
9 2 ralrimiva φ y B y R C = y P C
10 9 adantr φ x A y B y R C = y P C
11 8 10 1 rspcdva φ x A F x R C = F x P C
12 11 mpteq2dva φ x A F x R C = x A F x P C
13 eqidd φ x A F x = F x
14 3 4 5 13 ofcfval φ F fc R C = x A F x R C
15 3 4 5 13 ofcfval φ F fc P C = x A F x P C
16 12 14 15 3eqtr4d φ F fc R C = F fc P C