Step |
Hyp |
Ref |
Expression |
1 |
|
ofcfeqd2.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
2 |
|
ofcfeqd2.2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 𝑅 𝐶 ) = ( 𝑦 𝑃 𝐶 ) ) |
3 |
|
ofcfeqd2.3 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
4 |
|
ofcfeqd2.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
ofcfeqd2.5 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) |
6 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑦 𝑅 𝐶 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) |
7 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑦 𝑃 𝐶 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑃 𝐶 ) ) |
8 |
6 7
|
eqeq12d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝑦 𝑅 𝐶 ) = ( 𝑦 𝑃 𝐶 ) ↔ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑃 𝐶 ) ) ) |
9 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝐶 ) = ( 𝑦 𝑃 𝐶 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝐶 ) = ( 𝑦 𝑃 𝐶 ) ) |
11 |
8 10 1
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑃 𝐶 ) ) |
12 |
11
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑃 𝐶 ) ) ) |
13 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
14 |
3 4 5 13
|
ofcfval |
⊢ ( 𝜑 → ( 𝐹 ∘f/c 𝑅 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) ) |
15 |
3 4 5 13
|
ofcfval |
⊢ ( 𝜑 → ( 𝐹 ∘f/c 𝑃 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑃 𝐶 ) ) ) |
16 |
12 14 15
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘f/c 𝑅 𝐶 ) = ( 𝐹 ∘f/c 𝑃 𝐶 ) ) |