Metamath Proof Explorer


Theorem ofcfval3

Description: General value of ( F oFC R C ) with no assumptions on functionality of F . (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Assertion ofcfval3 ( ( 𝐹𝑉𝐶𝑊 ) → ( 𝐹f/c 𝑅 𝐶 ) = ( 𝑥 ∈ dom 𝐹 ↦ ( ( 𝐹𝑥 ) 𝑅 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐹𝑉𝐹 ∈ V )
2 1 adantr ( ( 𝐹𝑉𝐶𝑊 ) → 𝐹 ∈ V )
3 elex ( 𝐶𝑊𝐶 ∈ V )
4 3 adantl ( ( 𝐹𝑉𝐶𝑊 ) → 𝐶 ∈ V )
5 dmexg ( 𝐹𝑉 → dom 𝐹 ∈ V )
6 mptexg ( dom 𝐹 ∈ V → ( 𝑥 ∈ dom 𝐹 ↦ ( ( 𝐹𝑥 ) 𝑅 𝐶 ) ) ∈ V )
7 5 6 syl ( 𝐹𝑉 → ( 𝑥 ∈ dom 𝐹 ↦ ( ( 𝐹𝑥 ) 𝑅 𝐶 ) ) ∈ V )
8 7 adantr ( ( 𝐹𝑉𝐶𝑊 ) → ( 𝑥 ∈ dom 𝐹 ↦ ( ( 𝐹𝑥 ) 𝑅 𝐶 ) ) ∈ V )
9 simpl ( ( 𝑓 = 𝐹𝑐 = 𝐶 ) → 𝑓 = 𝐹 )
10 9 dmeqd ( ( 𝑓 = 𝐹𝑐 = 𝐶 ) → dom 𝑓 = dom 𝐹 )
11 9 fveq1d ( ( 𝑓 = 𝐹𝑐 = 𝐶 ) → ( 𝑓𝑥 ) = ( 𝐹𝑥 ) )
12 simpr ( ( 𝑓 = 𝐹𝑐 = 𝐶 ) → 𝑐 = 𝐶 )
13 11 12 oveq12d ( ( 𝑓 = 𝐹𝑐 = 𝐶 ) → ( ( 𝑓𝑥 ) 𝑅 𝑐 ) = ( ( 𝐹𝑥 ) 𝑅 𝐶 ) )
14 10 13 mpteq12dv ( ( 𝑓 = 𝐹𝑐 = 𝐶 ) → ( 𝑥 ∈ dom 𝑓 ↦ ( ( 𝑓𝑥 ) 𝑅 𝑐 ) ) = ( 𝑥 ∈ dom 𝐹 ↦ ( ( 𝐹𝑥 ) 𝑅 𝐶 ) ) )
15 df-ofc f/c 𝑅 = ( 𝑓 ∈ V , 𝑐 ∈ V ↦ ( 𝑥 ∈ dom 𝑓 ↦ ( ( 𝑓𝑥 ) 𝑅 𝑐 ) ) )
16 14 15 ovmpoga ( ( 𝐹 ∈ V ∧ 𝐶 ∈ V ∧ ( 𝑥 ∈ dom 𝐹 ↦ ( ( 𝐹𝑥 ) 𝑅 𝐶 ) ) ∈ V ) → ( 𝐹f/c 𝑅 𝐶 ) = ( 𝑥 ∈ dom 𝐹 ↦ ( ( 𝐹𝑥 ) 𝑅 𝐶 ) ) )
17 2 4 8 16 syl3anc ( ( 𝐹𝑉𝐶𝑊 ) → ( 𝐹f/c 𝑅 𝐶 ) = ( 𝑥 ∈ dom 𝐹 ↦ ( ( 𝐹𝑥 ) 𝑅 𝐶 ) ) )