Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) |
2 |
1
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → 𝐹 ∈ V ) |
3 |
|
elex |
⊢ ( 𝐶 ∈ 𝑊 → 𝐶 ∈ V ) |
4 |
3
|
adantl |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → 𝐶 ∈ V ) |
5 |
|
dmexg |
⊢ ( 𝐹 ∈ 𝑉 → dom 𝐹 ∈ V ) |
6 |
|
mptexg |
⊢ ( dom 𝐹 ∈ V → ( 𝑥 ∈ dom 𝐹 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) ∈ V ) |
7 |
5 6
|
syl |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝑥 ∈ dom 𝐹 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) ∈ V ) |
8 |
7
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝑥 ∈ dom 𝐹 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) ∈ V ) |
9 |
|
simpl |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑐 = 𝐶 ) → 𝑓 = 𝐹 ) |
10 |
9
|
dmeqd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑐 = 𝐶 ) → dom 𝑓 = dom 𝐹 ) |
11 |
9
|
fveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑐 = 𝐶 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
12 |
|
simpr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑐 = 𝐶 ) → 𝑐 = 𝐶 ) |
13 |
11 12
|
oveq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑐 = 𝐶 ) → ( ( 𝑓 ‘ 𝑥 ) 𝑅 𝑐 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) |
14 |
10 13
|
mpteq12dv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑐 = 𝐶 ) → ( 𝑥 ∈ dom 𝑓 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 𝑐 ) ) = ( 𝑥 ∈ dom 𝐹 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) ) |
15 |
|
df-ofc |
⊢ ∘f/c 𝑅 = ( 𝑓 ∈ V , 𝑐 ∈ V ↦ ( 𝑥 ∈ dom 𝑓 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 𝑐 ) ) ) |
16 |
14 15
|
ovmpoga |
⊢ ( ( 𝐹 ∈ V ∧ 𝐶 ∈ V ∧ ( 𝑥 ∈ dom 𝐹 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) ∈ V ) → ( 𝐹 ∘f/c 𝑅 𝐶 ) = ( 𝑥 ∈ dom 𝐹 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) ) |
17 |
2 4 8 16
|
syl3anc |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐹 ∘f/c 𝑅 𝐶 ) = ( 𝑥 ∈ dom 𝐹 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) ) |