Metamath Proof Explorer


Theorem ofcf

Description: The function/constant operation produces a function. (Contributed by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Hypotheses ofcf.1 ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑇 ) ) → ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 )
ofcf.2 ( 𝜑𝐹 : 𝐴𝑆 )
ofcf.4 ( 𝜑𝐴𝑉 )
ofcf.5 ( 𝜑𝐶𝑇 )
Assertion ofcf ( 𝜑 → ( 𝐹f/c 𝑅 𝐶 ) : 𝐴𝑈 )

Proof

Step Hyp Ref Expression
1 ofcf.1 ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑇 ) ) → ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 )
2 ofcf.2 ( 𝜑𝐹 : 𝐴𝑆 )
3 ofcf.4 ( 𝜑𝐴𝑉 )
4 ofcf.5 ( 𝜑𝐶𝑇 )
5 2 ffnd ( 𝜑𝐹 Fn 𝐴 )
6 eqidd ( ( 𝜑𝑧𝐴 ) → ( 𝐹𝑧 ) = ( 𝐹𝑧 ) )
7 5 3 4 6 ofcfval ( 𝜑 → ( 𝐹f/c 𝑅 𝐶 ) = ( 𝑧𝐴 ↦ ( ( 𝐹𝑧 ) 𝑅 𝐶 ) ) )
8 2 ffvelrnda ( ( 𝜑𝑧𝐴 ) → ( 𝐹𝑧 ) ∈ 𝑆 )
9 4 adantr ( ( 𝜑𝑧𝐴 ) → 𝐶𝑇 )
10 1 ralrimivva ( 𝜑 → ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 )
11 10 adantr ( ( 𝜑𝑧𝐴 ) → ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 )
12 ovrspc2v ( ( ( ( 𝐹𝑧 ) ∈ 𝑆𝐶𝑇 ) ∧ ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) → ( ( 𝐹𝑧 ) 𝑅 𝐶 ) ∈ 𝑈 )
13 8 9 11 12 syl21anc ( ( 𝜑𝑧𝐴 ) → ( ( 𝐹𝑧 ) 𝑅 𝐶 ) ∈ 𝑈 )
14 7 13 fmpt3d ( 𝜑 → ( 𝐹f/c 𝑅 𝐶 ) : 𝐴𝑈 )