| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ofcf.1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑇 ) )  →  ( 𝑥 𝑅 𝑦 )  ∈  𝑈 ) | 
						
							| 2 |  | ofcf.2 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝑆 ) | 
						
							| 3 |  | ofcf.4 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 4 |  | ofcf.5 | ⊢ ( 𝜑  →  𝐶  ∈  𝑇 ) | 
						
							| 5 | 2 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 6 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 7 | 5 3 4 6 | ofcfval | ⊢ ( 𝜑  →  ( 𝐹  ∘f/c  𝑅 𝐶 )  =  ( 𝑧  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝐶 ) ) ) | 
						
							| 8 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑆 ) | 
						
							| 9 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  𝐶  ∈  𝑇 ) | 
						
							| 10 | 1 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑇 ( 𝑥 𝑅 𝑦 )  ∈  𝑈 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑇 ( 𝑥 𝑅 𝑦 )  ∈  𝑈 ) | 
						
							| 12 |  | ovrspc2v | ⊢ ( ( ( ( 𝐹 ‘ 𝑧 )  ∈  𝑆  ∧  𝐶  ∈  𝑇 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑇 ( 𝑥 𝑅 𝑦 )  ∈  𝑈 )  →  ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝐶 )  ∈  𝑈 ) | 
						
							| 13 | 8 9 11 12 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝐶 )  ∈  𝑈 ) | 
						
							| 14 | 7 13 | fmpt3d | ⊢ ( 𝜑  →  ( 𝐹  ∘f/c  𝑅 𝐶 ) : 𝐴 ⟶ 𝑈 ) |