Step |
Hyp |
Ref |
Expression |
1 |
|
ofcf.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) |
2 |
|
ofcf.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) |
3 |
|
ofcf.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
4 |
|
ofcf.5 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑇 ) |
5 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
6 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
7 |
5 3 4 6
|
ofcfval |
⊢ ( 𝜑 → ( 𝐹 ∘f/c 𝑅 𝐶 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝐶 ) ) ) |
8 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑆 ) |
9 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐶 ∈ 𝑇 ) |
10 |
1
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) |
12 |
|
ovrspc2v |
⊢ ( ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) → ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝐶 ) ∈ 𝑈 ) |
13 |
8 9 11 12
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝐶 ) ∈ 𝑈 ) |
14 |
7 13
|
fmpt3d |
⊢ ( 𝜑 → ( 𝐹 ∘f/c 𝑅 𝐶 ) : 𝐴 ⟶ 𝑈 ) |