| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ofcfval2.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | ofcfval2.2 | ⊢ ( 𝜑  →  𝐶  ∈  𝑊 ) | 
						
							| 3 |  | ofcfval2.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑋 ) | 
						
							| 4 |  | ofcfval2.4 | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 5 | 3 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝑋 ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 7 | 6 | fnmpt | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝑋  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴 ) | 
						
							| 8 | 5 7 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴 ) | 
						
							| 9 | 4 | fneq1d | ⊢ ( 𝜑  →  ( 𝐹  Fn  𝐴  ↔  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴 ) ) | 
						
							| 10 | 8 9 | mpbird | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 11 | 4 3 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  =  𝐵 ) | 
						
							| 12 | 10 1 2 11 | ofcfval | ⊢ ( 𝜑  →  ( 𝐹  ∘f/c  𝑅 𝐶 )  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐵 𝑅 𝐶 ) ) ) |