Metamath Proof Explorer


Theorem ofcfval2

Description: The function operation expressed as a mapping. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcfval2.1 ( 𝜑𝐴𝑉 )
ofcfval2.2 ( 𝜑𝐶𝑊 )
ofcfval2.3 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑋 )
ofcfval2.4 ( 𝜑𝐹 = ( 𝑥𝐴𝐵 ) )
Assertion ofcfval2 ( 𝜑 → ( 𝐹f/c 𝑅 𝐶 ) = ( 𝑥𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 ofcfval2.1 ( 𝜑𝐴𝑉 )
2 ofcfval2.2 ( 𝜑𝐶𝑊 )
3 ofcfval2.3 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑋 )
4 ofcfval2.4 ( 𝜑𝐹 = ( 𝑥𝐴𝐵 ) )
5 3 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝐵𝑋 )
6 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
7 6 fnmpt ( ∀ 𝑥𝐴 𝐵𝑋 → ( 𝑥𝐴𝐵 ) Fn 𝐴 )
8 5 7 syl ( 𝜑 → ( 𝑥𝐴𝐵 ) Fn 𝐴 )
9 4 fneq1d ( 𝜑 → ( 𝐹 Fn 𝐴 ↔ ( 𝑥𝐴𝐵 ) Fn 𝐴 ) )
10 8 9 mpbird ( 𝜑𝐹 Fn 𝐴 )
11 4 3 fvmpt2d ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) = 𝐵 )
12 10 1 2 11 ofcfval ( 𝜑 → ( 𝐹f/c 𝑅 𝐶 ) = ( 𝑥𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) )