| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ofcfval2.1 |
|- ( ph -> A e. V ) |
| 2 |
|
ofcfval2.2 |
|- ( ph -> C e. W ) |
| 3 |
|
ofcfval2.3 |
|- ( ( ph /\ x e. A ) -> B e. X ) |
| 4 |
|
ofcfval2.4 |
|- ( ph -> F = ( x e. A |-> B ) ) |
| 5 |
3
|
ralrimiva |
|- ( ph -> A. x e. A B e. X ) |
| 6 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
| 7 |
6
|
fnmpt |
|- ( A. x e. A B e. X -> ( x e. A |-> B ) Fn A ) |
| 8 |
5 7
|
syl |
|- ( ph -> ( x e. A |-> B ) Fn A ) |
| 9 |
4
|
fneq1d |
|- ( ph -> ( F Fn A <-> ( x e. A |-> B ) Fn A ) ) |
| 10 |
8 9
|
mpbird |
|- ( ph -> F Fn A ) |
| 11 |
4 3
|
fvmpt2d |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |
| 12 |
10 1 2 11
|
ofcfval |
|- ( ph -> ( F oFC R C ) = ( x e. A |-> ( B R C ) ) ) |