| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ofcfval2.1 |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | ofcfval2.2 |  |-  ( ph -> C e. W ) | 
						
							| 3 |  | ofcfval2.3 |  |-  ( ( ph /\ x e. A ) -> B e. X ) | 
						
							| 4 |  | ofcfval2.4 |  |-  ( ph -> F = ( x e. A |-> B ) ) | 
						
							| 5 | 3 | ralrimiva |  |-  ( ph -> A. x e. A B e. X ) | 
						
							| 6 |  | eqid |  |-  ( x e. A |-> B ) = ( x e. A |-> B ) | 
						
							| 7 | 6 | fnmpt |  |-  ( A. x e. A B e. X -> ( x e. A |-> B ) Fn A ) | 
						
							| 8 | 5 7 | syl |  |-  ( ph -> ( x e. A |-> B ) Fn A ) | 
						
							| 9 | 4 | fneq1d |  |-  ( ph -> ( F Fn A <-> ( x e. A |-> B ) Fn A ) ) | 
						
							| 10 | 8 9 | mpbird |  |-  ( ph -> F Fn A ) | 
						
							| 11 | 4 3 | fvmpt2d |  |-  ( ( ph /\ x e. A ) -> ( F ` x ) = B ) | 
						
							| 12 | 10 1 2 11 | ofcfval |  |-  ( ph -> ( F oFC R C ) = ( x e. A |-> ( B R C ) ) ) |