Metamath Proof Explorer


Theorem ofcfval4

Description: The function/constant operation expressed as an operation composition. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcfval4.1
|- ( ph -> F : A --> B )
ofcfval4.2
|- ( ph -> A e. V )
ofcfval4.3
|- ( ph -> C e. W )
Assertion ofcfval4
|- ( ph -> ( F oFC R C ) = ( ( x e. B |-> ( x R C ) ) o. F ) )

Proof

Step Hyp Ref Expression
1 ofcfval4.1
 |-  ( ph -> F : A --> B )
2 ofcfval4.2
 |-  ( ph -> A e. V )
3 ofcfval4.3
 |-  ( ph -> C e. W )
4 1 fdmd
 |-  ( ph -> dom F = A )
5 4 mpteq1d
 |-  ( ph -> ( y e. dom F |-> ( ( F ` y ) R C ) ) = ( y e. A |-> ( ( F ` y ) R C ) ) )
6 1 2 fexd
 |-  ( ph -> F e. _V )
7 ofcfval3
 |-  ( ( F e. _V /\ C e. W ) -> ( F oFC R C ) = ( y e. dom F |-> ( ( F ` y ) R C ) ) )
8 6 3 7 syl2anc
 |-  ( ph -> ( F oFC R C ) = ( y e. dom F |-> ( ( F ` y ) R C ) ) )
9 1 ffvelrnda
 |-  ( ( ph /\ y e. A ) -> ( F ` y ) e. B )
10 1 feqmptd
 |-  ( ph -> F = ( y e. A |-> ( F ` y ) ) )
11 eqidd
 |-  ( ph -> ( x e. B |-> ( x R C ) ) = ( x e. B |-> ( x R C ) ) )
12 oveq1
 |-  ( x = ( F ` y ) -> ( x R C ) = ( ( F ` y ) R C ) )
13 9 10 11 12 fmptco
 |-  ( ph -> ( ( x e. B |-> ( x R C ) ) o. F ) = ( y e. A |-> ( ( F ` y ) R C ) ) )
14 5 8 13 3eqtr4d
 |-  ( ph -> ( F oFC R C ) = ( ( x e. B |-> ( x R C ) ) o. F ) )