Metamath Proof Explorer


Theorem ofcc

Description: Left operation by a constant on a mixed operation with a constant. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcc.1
|- ( ph -> A e. V )
ofcc.2
|- ( ph -> B e. W )
ofcc.3
|- ( ph -> C e. X )
Assertion ofcc
|- ( ph -> ( ( A X. { B } ) oFC R C ) = ( A X. { ( B R C ) } ) )

Proof

Step Hyp Ref Expression
1 ofcc.1
 |-  ( ph -> A e. V )
2 ofcc.2
 |-  ( ph -> B e. W )
3 ofcc.3
 |-  ( ph -> C e. X )
4 fnconstg
 |-  ( B e. W -> ( A X. { B } ) Fn A )
5 2 4 syl
 |-  ( ph -> ( A X. { B } ) Fn A )
6 fvconst2g
 |-  ( ( B e. W /\ x e. A ) -> ( ( A X. { B } ) ` x ) = B )
7 2 6 sylan
 |-  ( ( ph /\ x e. A ) -> ( ( A X. { B } ) ` x ) = B )
8 5 1 3 7 ofcfval
 |-  ( ph -> ( ( A X. { B } ) oFC R C ) = ( x e. A |-> ( B R C ) ) )
9 fconstmpt
 |-  ( A X. { ( B R C ) } ) = ( x e. A |-> ( B R C ) )
10 8 9 eqtr4di
 |-  ( ph -> ( ( A X. { B } ) oFC R C ) = ( A X. { ( B R C ) } ) )