Step |
Hyp |
Ref |
Expression |
1 |
|
ofcc.1 |
|- ( ph -> A e. V ) |
2 |
|
ofcc.2 |
|- ( ph -> B e. W ) |
3 |
|
ofcc.3 |
|- ( ph -> C e. X ) |
4 |
|
fnconstg |
|- ( B e. W -> ( A X. { B } ) Fn A ) |
5 |
2 4
|
syl |
|- ( ph -> ( A X. { B } ) Fn A ) |
6 |
|
fvconst2g |
|- ( ( B e. W /\ x e. A ) -> ( ( A X. { B } ) ` x ) = B ) |
7 |
2 6
|
sylan |
|- ( ( ph /\ x e. A ) -> ( ( A X. { B } ) ` x ) = B ) |
8 |
5 1 3 7
|
ofcfval |
|- ( ph -> ( ( A X. { B } ) oFC R C ) = ( x e. A |-> ( B R C ) ) ) |
9 |
|
fconstmpt |
|- ( A X. { ( B R C ) } ) = ( x e. A |-> ( B R C ) ) |
10 |
8 9
|
eqtr4di |
|- ( ph -> ( ( A X. { B } ) oFC R C ) = ( A X. { ( B R C ) } ) ) |