| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ofcof.1 |
|- ( ph -> F : A --> B ) |
| 2 |
|
ofcof.2 |
|- ( ph -> A e. V ) |
| 3 |
|
ofcof.3 |
|- ( ph -> C e. W ) |
| 4 |
1
|
ffnd |
|- ( ph -> F Fn A ) |
| 5 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
| 6 |
4 2 3 5
|
ofcfval |
|- ( ph -> ( F oFC R C ) = ( x e. A |-> ( ( F ` x ) R C ) ) ) |
| 7 |
|
fnconstg |
|- ( C e. W -> ( A X. { C } ) Fn A ) |
| 8 |
3 7
|
syl |
|- ( ph -> ( A X. { C } ) Fn A ) |
| 9 |
|
inidm |
|- ( A i^i A ) = A |
| 10 |
|
fvconst2g |
|- ( ( C e. W /\ x e. A ) -> ( ( A X. { C } ) ` x ) = C ) |
| 11 |
3 10
|
sylan |
|- ( ( ph /\ x e. A ) -> ( ( A X. { C } ) ` x ) = C ) |
| 12 |
4 8 2 2 9 5 11
|
offval |
|- ( ph -> ( F oF R ( A X. { C } ) ) = ( x e. A |-> ( ( F ` x ) R C ) ) ) |
| 13 |
6 12
|
eqtr4d |
|- ( ph -> ( F oFC R C ) = ( F oF R ( A X. { C } ) ) ) |