Step |
Hyp |
Ref |
Expression |
1 |
|
ofcof.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
ofcof.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
ofcof.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) |
4 |
1
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
5 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
6 |
4 2 3 5
|
ofcfval |
⊢ ( 𝜑 → ( 𝐹 ∘f/c 𝑅 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) ) |
7 |
|
fnconstg |
⊢ ( 𝐶 ∈ 𝑊 → ( 𝐴 × { 𝐶 } ) Fn 𝐴 ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → ( 𝐴 × { 𝐶 } ) Fn 𝐴 ) |
9 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
10 |
|
fvconst2g |
⊢ ( ( 𝐶 ∈ 𝑊 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { 𝐶 } ) ‘ 𝑥 ) = 𝐶 ) |
11 |
3 10
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { 𝐶 } ) ‘ 𝑥 ) = 𝐶 ) |
12 |
4 8 2 2 9 5 11
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 ( 𝐴 × { 𝐶 } ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝐶 ) ) ) |
13 |
6 12
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘f/c 𝑅 𝐶 ) = ( 𝐹 ∘f 𝑅 ( 𝐴 × { 𝐶 } ) ) ) |