Metamath Proof Explorer


Theorem ofcof

Description: Relate function operation with operation with a constant. (Contributed by Thierry Arnoux, 3-Oct-2018)

Ref Expression
Hypotheses ofcof.1 ( 𝜑𝐹 : 𝐴𝐵 )
ofcof.2 ( 𝜑𝐴𝑉 )
ofcof.3 ( 𝜑𝐶𝑊 )
Assertion ofcof ( 𝜑 → ( 𝐹f/c 𝑅 𝐶 ) = ( 𝐹f 𝑅 ( 𝐴 × { 𝐶 } ) ) )

Proof

Step Hyp Ref Expression
1 ofcof.1 ( 𝜑𝐹 : 𝐴𝐵 )
2 ofcof.2 ( 𝜑𝐴𝑉 )
3 ofcof.3 ( 𝜑𝐶𝑊 )
4 1 ffnd ( 𝜑𝐹 Fn 𝐴 )
5 eqidd ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) = ( 𝐹𝑥 ) )
6 4 2 3 5 ofcfval ( 𝜑 → ( 𝐹f/c 𝑅 𝐶 ) = ( 𝑥𝐴 ↦ ( ( 𝐹𝑥 ) 𝑅 𝐶 ) ) )
7 fnconstg ( 𝐶𝑊 → ( 𝐴 × { 𝐶 } ) Fn 𝐴 )
8 3 7 syl ( 𝜑 → ( 𝐴 × { 𝐶 } ) Fn 𝐴 )
9 inidm ( 𝐴𝐴 ) = 𝐴
10 fvconst2g ( ( 𝐶𝑊𝑥𝐴 ) → ( ( 𝐴 × { 𝐶 } ) ‘ 𝑥 ) = 𝐶 )
11 3 10 sylan ( ( 𝜑𝑥𝐴 ) → ( ( 𝐴 × { 𝐶 } ) ‘ 𝑥 ) = 𝐶 )
12 4 8 2 2 9 5 11 offval ( 𝜑 → ( 𝐹f 𝑅 ( 𝐴 × { 𝐶 } ) ) = ( 𝑥𝐴 ↦ ( ( 𝐹𝑥 ) 𝑅 𝐶 ) ) )
13 6 12 eqtr4d ( 𝜑 → ( 𝐹f/c 𝑅 𝐶 ) = ( 𝐹f 𝑅 ( 𝐴 × { 𝐶 } ) ) )