Metamath Proof Explorer


Theorem ofcof

Description: Relate function operation with operation with a constant. (Contributed by Thierry Arnoux, 3-Oct-2018)

Ref Expression
Hypotheses ofcof.1 φ F : A B
ofcof.2 φ A V
ofcof.3 φ C W
Assertion ofcof φ F fc R C = F R f A × C

Proof

Step Hyp Ref Expression
1 ofcof.1 φ F : A B
2 ofcof.2 φ A V
3 ofcof.3 φ C W
4 1 ffnd φ F Fn A
5 eqidd φ x A F x = F x
6 4 2 3 5 ofcfval φ F fc R C = x A F x R C
7 fnconstg C W A × C Fn A
8 3 7 syl φ A × C Fn A
9 inidm A A = A
10 fvconst2g C W x A A × C x = C
11 3 10 sylan φ x A A × C x = C
12 4 8 2 2 9 5 11 offval φ F R f A × C = x A F x R C
13 6 12 eqtr4d φ F fc R C = F R f A × C