Metamath Proof Explorer


Theorem ofcc

Description: Left operation by a constant on a mixed operation with a constant. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcc.1 φAV
ofcc.2 φBW
ofcc.3 φCX
Assertion ofcc φA×BfcRC=A×BRC

Proof

Step Hyp Ref Expression
1 ofcc.1 φAV
2 ofcc.2 φBW
3 ofcc.3 φCX
4 fnconstg BWA×BFnA
5 2 4 syl φA×BFnA
6 fvconst2g BWxAA×Bx=B
7 2 6 sylan φxAA×Bx=B
8 5 1 3 7 ofcfval φA×BfcRC=xABRC
9 fconstmpt A×BRC=xABRC
10 8 9 eqtr4di φA×BfcRC=A×BRC