Metamath Proof Explorer


Theorem ofcc

Description: Left operation by a constant on a mixed operation with a constant. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcc.1 φ A V
ofcc.2 φ B W
ofcc.3 φ C X
Assertion ofcc φ A × B fc R C = A × B R C

Proof

Step Hyp Ref Expression
1 ofcc.1 φ A V
2 ofcc.2 φ B W
3 ofcc.3 φ C X
4 fnconstg B W A × B Fn A
5 2 4 syl φ A × B Fn A
6 fvconst2g B W x A A × B x = B
7 2 6 sylan φ x A A × B x = B
8 5 1 3 7 ofcfval φ A × B fc R C = x A B R C
9 fconstmpt A × B R C = x A B R C
10 8 9 eqtr4di φ A × B fc R C = A × B R C