Step |
Hyp |
Ref |
Expression |
1 |
|
ofcc.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
ofcc.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
ofcc.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
4 |
|
fnconstg |
⊢ ( 𝐵 ∈ 𝑊 → ( 𝐴 × { 𝐵 } ) Fn 𝐴 ) |
5 |
2 4
|
syl |
⊢ ( 𝜑 → ( 𝐴 × { 𝐵 } ) Fn 𝐴 ) |
6 |
|
fvconst2g |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑥 ) = 𝐵 ) |
7 |
2 6
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑥 ) = 𝐵 ) |
8 |
5 1 3 7
|
ofcfval |
⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f/c 𝑅 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) |
9 |
|
fconstmpt |
⊢ ( 𝐴 × { ( 𝐵 𝑅 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) |
10 |
8 9
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f/c 𝑅 𝐶 ) = ( 𝐴 × { ( 𝐵 𝑅 𝐶 ) } ) ) |