Metamath Proof Explorer


Theorem ofcc

Description: Left operation by a constant on a mixed operation with a constant. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcc.1 ( 𝜑𝐴𝑉 )
ofcc.2 ( 𝜑𝐵𝑊 )
ofcc.3 ( 𝜑𝐶𝑋 )
Assertion ofcc ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f/c 𝑅 𝐶 ) = ( 𝐴 × { ( 𝐵 𝑅 𝐶 ) } ) )

Proof

Step Hyp Ref Expression
1 ofcc.1 ( 𝜑𝐴𝑉 )
2 ofcc.2 ( 𝜑𝐵𝑊 )
3 ofcc.3 ( 𝜑𝐶𝑋 )
4 fnconstg ( 𝐵𝑊 → ( 𝐴 × { 𝐵 } ) Fn 𝐴 )
5 2 4 syl ( 𝜑 → ( 𝐴 × { 𝐵 } ) Fn 𝐴 )
6 fvconst2g ( ( 𝐵𝑊𝑥𝐴 ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑥 ) = 𝐵 )
7 2 6 sylan ( ( 𝜑𝑥𝐴 ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑥 ) = 𝐵 )
8 5 1 3 7 ofcfval ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f/c 𝑅 𝐶 ) = ( 𝑥𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) )
9 fconstmpt ( 𝐴 × { ( 𝐵 𝑅 𝐶 ) } ) = ( 𝑥𝐴 ↦ ( 𝐵 𝑅 𝐶 ) )
10 8 9 eqtr4di ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f/c 𝑅 𝐶 ) = ( 𝐴 × { ( 𝐵 𝑅 𝐶 ) } ) )