Metamath Proof Explorer


Theorem ofcfval4

Description: The function/constant operation expressed as an operation composition. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcfval4.1 φ F : A B
ofcfval4.2 φ A V
ofcfval4.3 φ C W
Assertion ofcfval4 φ F fc R C = x B x R C F

Proof

Step Hyp Ref Expression
1 ofcfval4.1 φ F : A B
2 ofcfval4.2 φ A V
3 ofcfval4.3 φ C W
4 1 fdmd φ dom F = A
5 4 mpteq1d φ y dom F F y R C = y A F y R C
6 1 2 fexd φ F V
7 ofcfval3 F V C W F fc R C = y dom F F y R C
8 6 3 7 syl2anc φ F fc R C = y dom F F y R C
9 1 ffvelrnda φ y A F y B
10 1 feqmptd φ F = y A F y
11 eqidd φ x B x R C = x B x R C
12 oveq1 x = F y x R C = F y R C
13 9 10 11 12 fmptco φ x B x R C F = y A F y R C
14 5 8 13 3eqtr4d φ F fc R C = x B x R C F