Metamath Proof Explorer


Theorem ofcfval3

Description: General value of ( F oFC R C ) with no assumptions on functionality of F . (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Assertion ofcfval3 F V C W F fc R C = x dom F F x R C

Proof

Step Hyp Ref Expression
1 elex F V F V
2 1 adantr F V C W F V
3 elex C W C V
4 3 adantl F V C W C V
5 dmexg F V dom F V
6 mptexg dom F V x dom F F x R C V
7 5 6 syl F V x dom F F x R C V
8 7 adantr F V C W x dom F F x R C V
9 simpl f = F c = C f = F
10 9 dmeqd f = F c = C dom f = dom F
11 9 fveq1d f = F c = C f x = F x
12 simpr f = F c = C c = C
13 11 12 oveq12d f = F c = C f x R c = F x R C
14 10 13 mpteq12dv f = F c = C x dom f f x R c = x dom F F x R C
15 df-ofc fc R = f V , c V x dom f f x R c
16 14 15 ovmpoga F V C V x dom F F x R C V F fc R C = x dom F F x R C
17 2 4 8 16 syl3anc F V C W F fc R C = x dom F F x R C