Metamath Proof Explorer


Theorem ofcfval3

Description: General value of ( F oFC R C ) with no assumptions on functionality of F . (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Assertion ofcfval3 FVCWFfcRC=xdomFFxRC

Proof

Step Hyp Ref Expression
1 elex FVFV
2 1 adantr FVCWFV
3 elex CWCV
4 3 adantl FVCWCV
5 dmexg FVdomFV
6 mptexg domFVxdomFFxRCV
7 5 6 syl FVxdomFFxRCV
8 7 adantr FVCWxdomFFxRCV
9 simpl f=Fc=Cf=F
10 9 dmeqd f=Fc=Cdomf=domF
11 9 fveq1d f=Fc=Cfx=Fx
12 simpr f=Fc=Cc=C
13 11 12 oveq12d f=Fc=CfxRc=FxRC
14 10 13 mpteq12dv f=Fc=CxdomffxRc=xdomFFxRC
15 df-ofc fcR=fV,cVxdomffxRc
16 14 15 ovmpoga FVCVxdomFFxRCVFfcRC=xdomFFxRC
17 2 4 8 16 syl3anc FVCWFfcRC=xdomFFxRC