Metamath Proof Explorer


Theorem ofcf

Description: The function/constant operation produces a function. (Contributed by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Hypotheses ofcf.1 φxSyTxRyU
ofcf.2 φF:AS
ofcf.4 φAV
ofcf.5 φCT
Assertion ofcf φFfcRC:AU

Proof

Step Hyp Ref Expression
1 ofcf.1 φxSyTxRyU
2 ofcf.2 φF:AS
3 ofcf.4 φAV
4 ofcf.5 φCT
5 2 ffnd φFFnA
6 eqidd φzAFz=Fz
7 5 3 4 6 ofcfval φFfcRC=zAFzRC
8 2 ffvelcdmda φzAFzS
9 4 adantr φzACT
10 1 ralrimivva φxSyTxRyU
11 10 adantr φzAxSyTxRyU
12 ovrspc2v FzSCTxSyTxRyUFzRCU
13 8 9 11 12 syl21anc φzAFzRCU
14 7 13 fmpt3d φFfcRC:AU