Metamath Proof Explorer


Theorem ofcfval2

Description: The function operation expressed as a mapping. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcfval2.1 φ A V
ofcfval2.2 φ C W
ofcfval2.3 φ x A B X
ofcfval2.4 φ F = x A B
Assertion ofcfval2 φ F fc R C = x A B R C

Proof

Step Hyp Ref Expression
1 ofcfval2.1 φ A V
2 ofcfval2.2 φ C W
3 ofcfval2.3 φ x A B X
4 ofcfval2.4 φ F = x A B
5 3 ralrimiva φ x A B X
6 eqid x A B = x A B
7 6 fnmpt x A B X x A B Fn A
8 5 7 syl φ x A B Fn A
9 4 fneq1d φ F Fn A x A B Fn A
10 8 9 mpbird φ F Fn A
11 4 3 fvmpt2d φ x A F x = B
12 10 1 2 11 ofcfval φ F fc R C = x A B R C