| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
|- ( F e. V -> F e. _V ) |
| 2 |
1
|
adantr |
|- ( ( F e. V /\ C e. W ) -> F e. _V ) |
| 3 |
|
elex |
|- ( C e. W -> C e. _V ) |
| 4 |
3
|
adantl |
|- ( ( F e. V /\ C e. W ) -> C e. _V ) |
| 5 |
|
dmexg |
|- ( F e. V -> dom F e. _V ) |
| 6 |
|
mptexg |
|- ( dom F e. _V -> ( x e. dom F |-> ( ( F ` x ) R C ) ) e. _V ) |
| 7 |
5 6
|
syl |
|- ( F e. V -> ( x e. dom F |-> ( ( F ` x ) R C ) ) e. _V ) |
| 8 |
7
|
adantr |
|- ( ( F e. V /\ C e. W ) -> ( x e. dom F |-> ( ( F ` x ) R C ) ) e. _V ) |
| 9 |
|
simpl |
|- ( ( f = F /\ c = C ) -> f = F ) |
| 10 |
9
|
dmeqd |
|- ( ( f = F /\ c = C ) -> dom f = dom F ) |
| 11 |
9
|
fveq1d |
|- ( ( f = F /\ c = C ) -> ( f ` x ) = ( F ` x ) ) |
| 12 |
|
simpr |
|- ( ( f = F /\ c = C ) -> c = C ) |
| 13 |
11 12
|
oveq12d |
|- ( ( f = F /\ c = C ) -> ( ( f ` x ) R c ) = ( ( F ` x ) R C ) ) |
| 14 |
10 13
|
mpteq12dv |
|- ( ( f = F /\ c = C ) -> ( x e. dom f |-> ( ( f ` x ) R c ) ) = ( x e. dom F |-> ( ( F ` x ) R C ) ) ) |
| 15 |
|
df-ofc |
|- oFC R = ( f e. _V , c e. _V |-> ( x e. dom f |-> ( ( f ` x ) R c ) ) ) |
| 16 |
14 15
|
ovmpoga |
|- ( ( F e. _V /\ C e. _V /\ ( x e. dom F |-> ( ( F ` x ) R C ) ) e. _V ) -> ( F oFC R C ) = ( x e. dom F |-> ( ( F ` x ) R C ) ) ) |
| 17 |
2 4 8 16
|
syl3anc |
|- ( ( F e. V /\ C e. W ) -> ( F oFC R C ) = ( x e. dom F |-> ( ( F ` x ) R C ) ) ) |