Metamath Proof Explorer


Theorem ofcval

Description: Evaluate a function/constant operation at a point. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcfval.1
|- ( ph -> F Fn A )
ofcfval.2
|- ( ph -> A e. V )
ofcfval.3
|- ( ph -> C e. W )
ofcval.6
|- ( ( ph /\ X e. A ) -> ( F ` X ) = B )
Assertion ofcval
|- ( ( ph /\ X e. A ) -> ( ( F oFC R C ) ` X ) = ( B R C ) )

Proof

Step Hyp Ref Expression
1 ofcfval.1
 |-  ( ph -> F Fn A )
2 ofcfval.2
 |-  ( ph -> A e. V )
3 ofcfval.3
 |-  ( ph -> C e. W )
4 ofcval.6
 |-  ( ( ph /\ X e. A ) -> ( F ` X ) = B )
5 eqidd
 |-  ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) )
6 1 2 3 5 ofcfval
 |-  ( ph -> ( F oFC R C ) = ( x e. A |-> ( ( F ` x ) R C ) ) )
7 6 adantr
 |-  ( ( ph /\ X e. A ) -> ( F oFC R C ) = ( x e. A |-> ( ( F ` x ) R C ) ) )
8 simpr
 |-  ( ( ( ph /\ X e. A ) /\ x = X ) -> x = X )
9 8 fveq2d
 |-  ( ( ( ph /\ X e. A ) /\ x = X ) -> ( F ` x ) = ( F ` X ) )
10 9 oveq1d
 |-  ( ( ( ph /\ X e. A ) /\ x = X ) -> ( ( F ` x ) R C ) = ( ( F ` X ) R C ) )
11 simpr
 |-  ( ( ph /\ X e. A ) -> X e. A )
12 ovexd
 |-  ( ( ph /\ X e. A ) -> ( ( F ` X ) R C ) e. _V )
13 7 10 11 12 fvmptd
 |-  ( ( ph /\ X e. A ) -> ( ( F oFC R C ) ` X ) = ( ( F ` X ) R C ) )
14 4 oveq1d
 |-  ( ( ph /\ X e. A ) -> ( ( F ` X ) R C ) = ( B R C ) )
15 13 14 eqtrd
 |-  ( ( ph /\ X e. A ) -> ( ( F oFC R C ) ` X ) = ( B R C ) )