Step |
Hyp |
Ref |
Expression |
1 |
|
ofcfval.1 |
|- ( ph -> F Fn A ) |
2 |
|
ofcfval.2 |
|- ( ph -> A e. V ) |
3 |
|
ofcfval.3 |
|- ( ph -> C e. W ) |
4 |
|
ofcval.6 |
|- ( ( ph /\ X e. A ) -> ( F ` X ) = B ) |
5 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
6 |
1 2 3 5
|
ofcfval |
|- ( ph -> ( F oFC R C ) = ( x e. A |-> ( ( F ` x ) R C ) ) ) |
7 |
6
|
adantr |
|- ( ( ph /\ X e. A ) -> ( F oFC R C ) = ( x e. A |-> ( ( F ` x ) R C ) ) ) |
8 |
|
simpr |
|- ( ( ( ph /\ X e. A ) /\ x = X ) -> x = X ) |
9 |
8
|
fveq2d |
|- ( ( ( ph /\ X e. A ) /\ x = X ) -> ( F ` x ) = ( F ` X ) ) |
10 |
9
|
oveq1d |
|- ( ( ( ph /\ X e. A ) /\ x = X ) -> ( ( F ` x ) R C ) = ( ( F ` X ) R C ) ) |
11 |
|
simpr |
|- ( ( ph /\ X e. A ) -> X e. A ) |
12 |
|
ovexd |
|- ( ( ph /\ X e. A ) -> ( ( F ` X ) R C ) e. _V ) |
13 |
7 10 11 12
|
fvmptd |
|- ( ( ph /\ X e. A ) -> ( ( F oFC R C ) ` X ) = ( ( F ` X ) R C ) ) |
14 |
4
|
oveq1d |
|- ( ( ph /\ X e. A ) -> ( ( F ` X ) R C ) = ( B R C ) ) |
15 |
13 14
|
eqtrd |
|- ( ( ph /\ X e. A ) -> ( ( F oFC R C ) ` X ) = ( B R C ) ) |