Metamath Proof Explorer


Theorem ofcval

Description: Evaluate a function/constant operation at a point. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcfval.1 φFFnA
ofcfval.2 φAV
ofcfval.3 φCW
ofcval.6 φXAFX=B
Assertion ofcval φXAFfcRCX=BRC

Proof

Step Hyp Ref Expression
1 ofcfval.1 φFFnA
2 ofcfval.2 φAV
3 ofcfval.3 φCW
4 ofcval.6 φXAFX=B
5 eqidd φxAFx=Fx
6 1 2 3 5 ofcfval φFfcRC=xAFxRC
7 6 adantr φXAFfcRC=xAFxRC
8 simpr φXAx=Xx=X
9 8 fveq2d φXAx=XFx=FX
10 9 oveq1d φXAx=XFxRC=FXRC
11 simpr φXAXA
12 ovexd φXAFXRCV
13 7 10 11 12 fvmptd φXAFfcRCX=FXRC
14 4 oveq1d φXAFXRC=BRC
15 13 14 eqtrd φXAFfcRCX=BRC