Metamath Proof Explorer


Theorem ofceq

Description: Equality theorem for function/constant operation. (Contributed by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Assertion ofceq ( 𝑅 = 𝑆 → ∘f/c 𝑅 = ∘f/c 𝑆 )

Proof

Step Hyp Ref Expression
1 oveq ( 𝑅 = 𝑆 → ( ( 𝑓𝑥 ) 𝑅 𝑐 ) = ( ( 𝑓𝑥 ) 𝑆 𝑐 ) )
2 1 mpteq2dv ( 𝑅 = 𝑆 → ( 𝑥 ∈ dom 𝑓 ↦ ( ( 𝑓𝑥 ) 𝑅 𝑐 ) ) = ( 𝑥 ∈ dom 𝑓 ↦ ( ( 𝑓𝑥 ) 𝑆 𝑐 ) ) )
3 2 mpoeq3dv ( 𝑅 = 𝑆 → ( 𝑓 ∈ V , 𝑐 ∈ V ↦ ( 𝑥 ∈ dom 𝑓 ↦ ( ( 𝑓𝑥 ) 𝑅 𝑐 ) ) ) = ( 𝑓 ∈ V , 𝑐 ∈ V ↦ ( 𝑥 ∈ dom 𝑓 ↦ ( ( 𝑓𝑥 ) 𝑆 𝑐 ) ) ) )
4 df-ofc f/c 𝑅 = ( 𝑓 ∈ V , 𝑐 ∈ V ↦ ( 𝑥 ∈ dom 𝑓 ↦ ( ( 𝑓𝑥 ) 𝑅 𝑐 ) ) )
5 df-ofc f/c 𝑆 = ( 𝑓 ∈ V , 𝑐 ∈ V ↦ ( 𝑥 ∈ dom 𝑓 ↦ ( ( 𝑓𝑥 ) 𝑆 𝑐 ) ) )
6 3 4 5 3eqtr4g ( 𝑅 = 𝑆 → ∘f/c 𝑅 = ∘f/c 𝑆 )