Step |
Hyp |
Ref |
Expression |
1 |
|
oveq |
⊢ ( 𝑅 = 𝑆 → ( ( 𝑓 ‘ 𝑥 ) 𝑅 𝑐 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑆 𝑐 ) ) |
2 |
1
|
mpteq2dv |
⊢ ( 𝑅 = 𝑆 → ( 𝑥 ∈ dom 𝑓 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 𝑐 ) ) = ( 𝑥 ∈ dom 𝑓 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑆 𝑐 ) ) ) |
3 |
2
|
mpoeq3dv |
⊢ ( 𝑅 = 𝑆 → ( 𝑓 ∈ V , 𝑐 ∈ V ↦ ( 𝑥 ∈ dom 𝑓 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 𝑐 ) ) ) = ( 𝑓 ∈ V , 𝑐 ∈ V ↦ ( 𝑥 ∈ dom 𝑓 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑆 𝑐 ) ) ) ) |
4 |
|
df-ofc |
⊢ ∘f/c 𝑅 = ( 𝑓 ∈ V , 𝑐 ∈ V ↦ ( 𝑥 ∈ dom 𝑓 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 𝑐 ) ) ) |
5 |
|
df-ofc |
⊢ ∘f/c 𝑆 = ( 𝑓 ∈ V , 𝑐 ∈ V ↦ ( 𝑥 ∈ dom 𝑓 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑆 𝑐 ) ) ) |
6 |
3 4 5
|
3eqtr4g |
⊢ ( 𝑅 = 𝑆 → ∘f/c 𝑅 = ∘f/c 𝑆 ) |