| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpco |
|- *p |
| 1 |
|
vj |
|- j |
| 2 |
|
ctop |
|- Top |
| 3 |
|
vf |
|- f |
| 4 |
|
cii |
|- II |
| 5 |
|
ccn |
|- Cn |
| 6 |
1
|
cv |
|- j |
| 7 |
4 6 5
|
co |
|- ( II Cn j ) |
| 8 |
|
vg |
|- g |
| 9 |
|
vx |
|- x |
| 10 |
|
cc0 |
|- 0 |
| 11 |
|
cicc |
|- [,] |
| 12 |
|
c1 |
|- 1 |
| 13 |
10 12 11
|
co |
|- ( 0 [,] 1 ) |
| 14 |
9
|
cv |
|- x |
| 15 |
|
cle |
|- <_ |
| 16 |
|
cdiv |
|- / |
| 17 |
|
c2 |
|- 2 |
| 18 |
12 17 16
|
co |
|- ( 1 / 2 ) |
| 19 |
14 18 15
|
wbr |
|- x <_ ( 1 / 2 ) |
| 20 |
3
|
cv |
|- f |
| 21 |
|
cmul |
|- x. |
| 22 |
17 14 21
|
co |
|- ( 2 x. x ) |
| 23 |
22 20
|
cfv |
|- ( f ` ( 2 x. x ) ) |
| 24 |
8
|
cv |
|- g |
| 25 |
|
cmin |
|- - |
| 26 |
22 12 25
|
co |
|- ( ( 2 x. x ) - 1 ) |
| 27 |
26 24
|
cfv |
|- ( g ` ( ( 2 x. x ) - 1 ) ) |
| 28 |
19 23 27
|
cif |
|- if ( x <_ ( 1 / 2 ) , ( f ` ( 2 x. x ) ) , ( g ` ( ( 2 x. x ) - 1 ) ) ) |
| 29 |
9 13 28
|
cmpt |
|- ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( f ` ( 2 x. x ) ) , ( g ` ( ( 2 x. x ) - 1 ) ) ) ) |
| 30 |
3 8 7 7 29
|
cmpo |
|- ( f e. ( II Cn j ) , g e. ( II Cn j ) |-> ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( f ` ( 2 x. x ) ) , ( g ` ( ( 2 x. x ) - 1 ) ) ) ) ) |
| 31 |
1 2 30
|
cmpt |
|- ( j e. Top |-> ( f e. ( II Cn j ) , g e. ( II Cn j ) |-> ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( f ` ( 2 x. x ) ) , ( g ` ( ( 2 x. x ) - 1 ) ) ) ) ) ) |
| 32 |
0 31
|
wceq |
|- *p = ( j e. Top |-> ( f e. ( II Cn j ) , g e. ( II Cn j ) |-> ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( f ` ( 2 x. x ) ) , ( g ` ( ( 2 x. x ) - 1 ) ) ) ) ) ) |