Metamath Proof Explorer


Definition df-pco

Description: Define the concatenation of two paths in a topological space J . For simplicity of definition, we define it on all paths, not just those whose endpoints line up. Definition of Hatcher p. 26. Hatcher denotes path concatenation with a square dot; other authors, such as Munkres, use a star. (Contributed by Jeff Madsen, 15-Jun-2010)

Ref Expression
Assertion df-pco
|- *p = ( j e. Top |-> ( f e. ( II Cn j ) , g e. ( II Cn j ) |-> ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( f ` ( 2 x. x ) ) , ( g ` ( ( 2 x. x ) - 1 ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpco
 |-  *p
1 vj
 |-  j
2 ctop
 |-  Top
3 vf
 |-  f
4 cii
 |-  II
5 ccn
 |-  Cn
6 1 cv
 |-  j
7 4 6 5 co
 |-  ( II Cn j )
8 vg
 |-  g
9 vx
 |-  x
10 cc0
 |-  0
11 cicc
 |-  [,]
12 c1
 |-  1
13 10 12 11 co
 |-  ( 0 [,] 1 )
14 9 cv
 |-  x
15 cle
 |-  <_
16 cdiv
 |-  /
17 c2
 |-  2
18 12 17 16 co
 |-  ( 1 / 2 )
19 14 18 15 wbr
 |-  x <_ ( 1 / 2 )
20 3 cv
 |-  f
21 cmul
 |-  x.
22 17 14 21 co
 |-  ( 2 x. x )
23 22 20 cfv
 |-  ( f ` ( 2 x. x ) )
24 8 cv
 |-  g
25 cmin
 |-  -
26 22 12 25 co
 |-  ( ( 2 x. x ) - 1 )
27 26 24 cfv
 |-  ( g ` ( ( 2 x. x ) - 1 ) )
28 19 23 27 cif
 |-  if ( x <_ ( 1 / 2 ) , ( f ` ( 2 x. x ) ) , ( g ` ( ( 2 x. x ) - 1 ) ) )
29 9 13 28 cmpt
 |-  ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( f ` ( 2 x. x ) ) , ( g ` ( ( 2 x. x ) - 1 ) ) ) )
30 3 8 7 7 29 cmpo
 |-  ( f e. ( II Cn j ) , g e. ( II Cn j ) |-> ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( f ` ( 2 x. x ) ) , ( g ` ( ( 2 x. x ) - 1 ) ) ) ) )
31 1 2 30 cmpt
 |-  ( j e. Top |-> ( f e. ( II Cn j ) , g e. ( II Cn j ) |-> ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( f ` ( 2 x. x ) ) , ( g ` ( ( 2 x. x ) - 1 ) ) ) ) ) )
32 0 31 wceq
 |-  *p = ( j e. Top |-> ( f e. ( II Cn j ) , g e. ( II Cn j ) |-> ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( f ` ( 2 x. x ) ) , ( g ` ( ( 2 x. x ) - 1 ) ) ) ) ) )