| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cpco |  |-  *p | 
						
							| 1 |  | vj |  |-  j | 
						
							| 2 |  | ctop |  |-  Top | 
						
							| 3 |  | vf |  |-  f | 
						
							| 4 |  | cii |  |-  II | 
						
							| 5 |  | ccn |  |-  Cn | 
						
							| 6 | 1 | cv |  |-  j | 
						
							| 7 | 4 6 5 | co |  |-  ( II Cn j ) | 
						
							| 8 |  | vg |  |-  g | 
						
							| 9 |  | vx |  |-  x | 
						
							| 10 |  | cc0 |  |-  0 | 
						
							| 11 |  | cicc |  |-  [,] | 
						
							| 12 |  | c1 |  |-  1 | 
						
							| 13 | 10 12 11 | co |  |-  ( 0 [,] 1 ) | 
						
							| 14 | 9 | cv |  |-  x | 
						
							| 15 |  | cle |  |-  <_ | 
						
							| 16 |  | cdiv |  |-  / | 
						
							| 17 |  | c2 |  |-  2 | 
						
							| 18 | 12 17 16 | co |  |-  ( 1 / 2 ) | 
						
							| 19 | 14 18 15 | wbr |  |-  x <_ ( 1 / 2 ) | 
						
							| 20 | 3 | cv |  |-  f | 
						
							| 21 |  | cmul |  |-  x. | 
						
							| 22 | 17 14 21 | co |  |-  ( 2 x. x ) | 
						
							| 23 | 22 20 | cfv |  |-  ( f ` ( 2 x. x ) ) | 
						
							| 24 | 8 | cv |  |-  g | 
						
							| 25 |  | cmin |  |-  - | 
						
							| 26 | 22 12 25 | co |  |-  ( ( 2 x. x ) - 1 ) | 
						
							| 27 | 26 24 | cfv |  |-  ( g ` ( ( 2 x. x ) - 1 ) ) | 
						
							| 28 | 19 23 27 | cif |  |-  if ( x <_ ( 1 / 2 ) , ( f ` ( 2 x. x ) ) , ( g ` ( ( 2 x. x ) - 1 ) ) ) | 
						
							| 29 | 9 13 28 | cmpt |  |-  ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( f ` ( 2 x. x ) ) , ( g ` ( ( 2 x. x ) - 1 ) ) ) ) | 
						
							| 30 | 3 8 7 7 29 | cmpo |  |-  ( f e. ( II Cn j ) , g e. ( II Cn j ) |-> ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( f ` ( 2 x. x ) ) , ( g ` ( ( 2 x. x ) - 1 ) ) ) ) ) | 
						
							| 31 | 1 2 30 | cmpt |  |-  ( j e. Top |-> ( f e. ( II Cn j ) , g e. ( II Cn j ) |-> ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( f ` ( 2 x. x ) ) , ( g ` ( ( 2 x. x ) - 1 ) ) ) ) ) ) | 
						
							| 32 | 0 31 | wceq |  |-  *p = ( j e. Top |-> ( f e. ( II Cn j ) , g e. ( II Cn j ) |-> ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( f ` ( 2 x. x ) ) , ( g ` ( ( 2 x. x ) - 1 ) ) ) ) ) ) |