Step |
Hyp |
Ref |
Expression |
0 |
|
comi |
|- Om1 |
1 |
|
vj |
|- j |
2 |
|
ctop |
|- Top |
3 |
|
vy |
|- y |
4 |
1
|
cv |
|- j |
5 |
4
|
cuni |
|- U. j |
6 |
|
cbs |
|- Base |
7 |
|
cnx |
|- ndx |
8 |
7 6
|
cfv |
|- ( Base ` ndx ) |
9 |
|
vf |
|- f |
10 |
|
cii |
|- II |
11 |
|
ccn |
|- Cn |
12 |
10 4 11
|
co |
|- ( II Cn j ) |
13 |
9
|
cv |
|- f |
14 |
|
cc0 |
|- 0 |
15 |
14 13
|
cfv |
|- ( f ` 0 ) |
16 |
3
|
cv |
|- y |
17 |
15 16
|
wceq |
|- ( f ` 0 ) = y |
18 |
|
c1 |
|- 1 |
19 |
18 13
|
cfv |
|- ( f ` 1 ) |
20 |
19 16
|
wceq |
|- ( f ` 1 ) = y |
21 |
17 20
|
wa |
|- ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) |
22 |
21 9 12
|
crab |
|- { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } |
23 |
8 22
|
cop |
|- <. ( Base ` ndx ) , { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } >. |
24 |
|
cplusg |
|- +g |
25 |
7 24
|
cfv |
|- ( +g ` ndx ) |
26 |
|
cpco |
|- *p |
27 |
4 26
|
cfv |
|- ( *p ` j ) |
28 |
25 27
|
cop |
|- <. ( +g ` ndx ) , ( *p ` j ) >. |
29 |
|
cts |
|- TopSet |
30 |
7 29
|
cfv |
|- ( TopSet ` ndx ) |
31 |
|
cxko |
|- ^ko |
32 |
4 10 31
|
co |
|- ( j ^ko II ) |
33 |
30 32
|
cop |
|- <. ( TopSet ` ndx ) , ( j ^ko II ) >. |
34 |
23 28 33
|
ctp |
|- { <. ( Base ` ndx ) , { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } >. , <. ( +g ` ndx ) , ( *p ` j ) >. , <. ( TopSet ` ndx ) , ( j ^ko II ) >. } |
35 |
1 3 2 5 34
|
cmpo |
|- ( j e. Top , y e. U. j |-> { <. ( Base ` ndx ) , { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } >. , <. ( +g ` ndx ) , ( *p ` j ) >. , <. ( TopSet ` ndx ) , ( j ^ko II ) >. } ) |
36 |
0 35
|
wceq |
|- Om1 = ( j e. Top , y e. U. j |-> { <. ( Base ` ndx ) , { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } >. , <. ( +g ` ndx ) , ( *p ` j ) >. , <. ( TopSet ` ndx ) , ( j ^ko II ) >. } ) |