| Step |
Hyp |
Ref |
Expression |
| 0 |
|
comi |
|- Om1 |
| 1 |
|
vj |
|- j |
| 2 |
|
ctop |
|- Top |
| 3 |
|
vy |
|- y |
| 4 |
1
|
cv |
|- j |
| 5 |
4
|
cuni |
|- U. j |
| 6 |
|
cbs |
|- Base |
| 7 |
|
cnx |
|- ndx |
| 8 |
7 6
|
cfv |
|- ( Base ` ndx ) |
| 9 |
|
vf |
|- f |
| 10 |
|
cii |
|- II |
| 11 |
|
ccn |
|- Cn |
| 12 |
10 4 11
|
co |
|- ( II Cn j ) |
| 13 |
9
|
cv |
|- f |
| 14 |
|
cc0 |
|- 0 |
| 15 |
14 13
|
cfv |
|- ( f ` 0 ) |
| 16 |
3
|
cv |
|- y |
| 17 |
15 16
|
wceq |
|- ( f ` 0 ) = y |
| 18 |
|
c1 |
|- 1 |
| 19 |
18 13
|
cfv |
|- ( f ` 1 ) |
| 20 |
19 16
|
wceq |
|- ( f ` 1 ) = y |
| 21 |
17 20
|
wa |
|- ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) |
| 22 |
21 9 12
|
crab |
|- { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } |
| 23 |
8 22
|
cop |
|- <. ( Base ` ndx ) , { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } >. |
| 24 |
|
cplusg |
|- +g |
| 25 |
7 24
|
cfv |
|- ( +g ` ndx ) |
| 26 |
|
cpco |
|- *p |
| 27 |
4 26
|
cfv |
|- ( *p ` j ) |
| 28 |
25 27
|
cop |
|- <. ( +g ` ndx ) , ( *p ` j ) >. |
| 29 |
|
cts |
|- TopSet |
| 30 |
7 29
|
cfv |
|- ( TopSet ` ndx ) |
| 31 |
|
cxko |
|- ^ko |
| 32 |
4 10 31
|
co |
|- ( j ^ko II ) |
| 33 |
30 32
|
cop |
|- <. ( TopSet ` ndx ) , ( j ^ko II ) >. |
| 34 |
23 28 33
|
ctp |
|- { <. ( Base ` ndx ) , { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } >. , <. ( +g ` ndx ) , ( *p ` j ) >. , <. ( TopSet ` ndx ) , ( j ^ko II ) >. } |
| 35 |
1 3 2 5 34
|
cmpo |
|- ( j e. Top , y e. U. j |-> { <. ( Base ` ndx ) , { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } >. , <. ( +g ` ndx ) , ( *p ` j ) >. , <. ( TopSet ` ndx ) , ( j ^ko II ) >. } ) |
| 36 |
0 35
|
wceq |
|- Om1 = ( j e. Top , y e. U. j |-> { <. ( Base ` ndx ) , { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } >. , <. ( +g ` ndx ) , ( *p ` j ) >. , <. ( TopSet ` ndx ) , ( j ^ko II ) >. } ) |