| Step | Hyp | Ref | Expression | 
						
							| 0 |  | comi |  |-  Om1 | 
						
							| 1 |  | vj |  |-  j | 
						
							| 2 |  | ctop |  |-  Top | 
						
							| 3 |  | vy |  |-  y | 
						
							| 4 | 1 | cv |  |-  j | 
						
							| 5 | 4 | cuni |  |-  U. j | 
						
							| 6 |  | cbs |  |-  Base | 
						
							| 7 |  | cnx |  |-  ndx | 
						
							| 8 | 7 6 | cfv |  |-  ( Base ` ndx ) | 
						
							| 9 |  | vf |  |-  f | 
						
							| 10 |  | cii |  |-  II | 
						
							| 11 |  | ccn |  |-  Cn | 
						
							| 12 | 10 4 11 | co |  |-  ( II Cn j ) | 
						
							| 13 | 9 | cv |  |-  f | 
						
							| 14 |  | cc0 |  |-  0 | 
						
							| 15 | 14 13 | cfv |  |-  ( f ` 0 ) | 
						
							| 16 | 3 | cv |  |-  y | 
						
							| 17 | 15 16 | wceq |  |-  ( f ` 0 ) = y | 
						
							| 18 |  | c1 |  |-  1 | 
						
							| 19 | 18 13 | cfv |  |-  ( f ` 1 ) | 
						
							| 20 | 19 16 | wceq |  |-  ( f ` 1 ) = y | 
						
							| 21 | 17 20 | wa |  |-  ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) | 
						
							| 22 | 21 9 12 | crab |  |-  { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } | 
						
							| 23 | 8 22 | cop |  |-  <. ( Base ` ndx ) , { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } >. | 
						
							| 24 |  | cplusg |  |-  +g | 
						
							| 25 | 7 24 | cfv |  |-  ( +g ` ndx ) | 
						
							| 26 |  | cpco |  |-  *p | 
						
							| 27 | 4 26 | cfv |  |-  ( *p ` j ) | 
						
							| 28 | 25 27 | cop |  |-  <. ( +g ` ndx ) , ( *p ` j ) >. | 
						
							| 29 |  | cts |  |-  TopSet | 
						
							| 30 | 7 29 | cfv |  |-  ( TopSet ` ndx ) | 
						
							| 31 |  | cxko |  |-  ^ko | 
						
							| 32 | 4 10 31 | co |  |-  ( j ^ko II ) | 
						
							| 33 | 30 32 | cop |  |-  <. ( TopSet ` ndx ) , ( j ^ko II ) >. | 
						
							| 34 | 23 28 33 | ctp |  |-  { <. ( Base ` ndx ) , { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } >. , <. ( +g ` ndx ) , ( *p ` j ) >. , <. ( TopSet ` ndx ) , ( j ^ko II ) >. } | 
						
							| 35 | 1 3 2 5 34 | cmpo |  |-  ( j e. Top , y e. U. j |-> { <. ( Base ` ndx ) , { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } >. , <. ( +g ` ndx ) , ( *p ` j ) >. , <. ( TopSet ` ndx ) , ( j ^ko II ) >. } ) | 
						
							| 36 | 0 35 | wceq |  |-  Om1 = ( j e. Top , y e. U. j |-> { <. ( Base ` ndx ) , { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } >. , <. ( +g ` ndx ) , ( *p ` j ) >. , <. ( TopSet ` ndx ) , ( j ^ko II ) >. } ) |