Step |
Hyp |
Ref |
Expression |
0 |
|
comn |
|- OmN |
1 |
|
vj |
|- j |
2 |
|
ctop |
|- Top |
3 |
|
vy |
|- y |
4 |
1
|
cv |
|- j |
5 |
4
|
cuni |
|- U. j |
6 |
|
cc0 |
|- 0 |
7 |
|
vx |
|- x |
8 |
|
cvv |
|- _V |
9 |
|
vp |
|- p |
10 |
|
ctopn |
|- TopOpen |
11 |
|
c1st |
|- 1st |
12 |
7
|
cv |
|- x |
13 |
12 11
|
cfv |
|- ( 1st ` x ) |
14 |
13 10
|
cfv |
|- ( TopOpen ` ( 1st ` x ) ) |
15 |
|
comi |
|- Om1 |
16 |
|
c2nd |
|- 2nd |
17 |
12 16
|
cfv |
|- ( 2nd ` x ) |
18 |
14 17 15
|
co |
|- ( ( TopOpen ` ( 1st ` x ) ) Om1 ( 2nd ` x ) ) |
19 |
|
cicc |
|- [,] |
20 |
|
c1 |
|- 1 |
21 |
6 20 19
|
co |
|- ( 0 [,] 1 ) |
22 |
17
|
csn |
|- { ( 2nd ` x ) } |
23 |
21 22
|
cxp |
|- ( ( 0 [,] 1 ) X. { ( 2nd ` x ) } ) |
24 |
18 23
|
cop |
|- <. ( ( TopOpen ` ( 1st ` x ) ) Om1 ( 2nd ` x ) ) , ( ( 0 [,] 1 ) X. { ( 2nd ` x ) } ) >. |
25 |
7 9 8 8 24
|
cmpo |
|- ( x e. _V , p e. _V |-> <. ( ( TopOpen ` ( 1st ` x ) ) Om1 ( 2nd ` x ) ) , ( ( 0 [,] 1 ) X. { ( 2nd ` x ) } ) >. ) |
26 |
25 11
|
ccom |
|- ( ( x e. _V , p e. _V |-> <. ( ( TopOpen ` ( 1st ` x ) ) Om1 ( 2nd ` x ) ) , ( ( 0 [,] 1 ) X. { ( 2nd ` x ) } ) >. ) o. 1st ) |
27 |
|
cbs |
|- Base |
28 |
|
cnx |
|- ndx |
29 |
28 27
|
cfv |
|- ( Base ` ndx ) |
30 |
29 5
|
cop |
|- <. ( Base ` ndx ) , U. j >. |
31 |
|
cts |
|- TopSet |
32 |
28 31
|
cfv |
|- ( TopSet ` ndx ) |
33 |
32 4
|
cop |
|- <. ( TopSet ` ndx ) , j >. |
34 |
30 33
|
cpr |
|- { <. ( Base ` ndx ) , U. j >. , <. ( TopSet ` ndx ) , j >. } |
35 |
3
|
cv |
|- y |
36 |
34 35
|
cop |
|- <. { <. ( Base ` ndx ) , U. j >. , <. ( TopSet ` ndx ) , j >. } , y >. |
37 |
26 36 6
|
cseq |
|- seq 0 ( ( ( x e. _V , p e. _V |-> <. ( ( TopOpen ` ( 1st ` x ) ) Om1 ( 2nd ` x ) ) , ( ( 0 [,] 1 ) X. { ( 2nd ` x ) } ) >. ) o. 1st ) , <. { <. ( Base ` ndx ) , U. j >. , <. ( TopSet ` ndx ) , j >. } , y >. ) |
38 |
1 3 2 5 37
|
cmpo |
|- ( j e. Top , y e. U. j |-> seq 0 ( ( ( x e. _V , p e. _V |-> <. ( ( TopOpen ` ( 1st ` x ) ) Om1 ( 2nd ` x ) ) , ( ( 0 [,] 1 ) X. { ( 2nd ` x ) } ) >. ) o. 1st ) , <. { <. ( Base ` ndx ) , U. j >. , <. ( TopSet ` ndx ) , j >. } , y >. ) ) |
39 |
0 38
|
wceq |
|- OmN = ( j e. Top , y e. U. j |-> seq 0 ( ( ( x e. _V , p e. _V |-> <. ( ( TopOpen ` ( 1st ` x ) ) Om1 ( 2nd ` x ) ) , ( ( 0 [,] 1 ) X. { ( 2nd ` x ) } ) >. ) o. 1st ) , <. { <. ( Base ` ndx ) , U. j >. , <. ( TopSet ` ndx ) , j >. } , y >. ) ) |