| Step | Hyp | Ref | Expression | 
						
							| 0 |  | comn |  |-  OmN | 
						
							| 1 |  | vj |  |-  j | 
						
							| 2 |  | ctop |  |-  Top | 
						
							| 3 |  | vy |  |-  y | 
						
							| 4 | 1 | cv |  |-  j | 
						
							| 5 | 4 | cuni |  |-  U. j | 
						
							| 6 |  | cc0 |  |-  0 | 
						
							| 7 |  | vx |  |-  x | 
						
							| 8 |  | cvv |  |-  _V | 
						
							| 9 |  | vp |  |-  p | 
						
							| 10 |  | ctopn |  |-  TopOpen | 
						
							| 11 |  | c1st |  |-  1st | 
						
							| 12 | 7 | cv |  |-  x | 
						
							| 13 | 12 11 | cfv |  |-  ( 1st ` x ) | 
						
							| 14 | 13 10 | cfv |  |-  ( TopOpen ` ( 1st ` x ) ) | 
						
							| 15 |  | comi |  |-  Om1 | 
						
							| 16 |  | c2nd |  |-  2nd | 
						
							| 17 | 12 16 | cfv |  |-  ( 2nd ` x ) | 
						
							| 18 | 14 17 15 | co |  |-  ( ( TopOpen ` ( 1st ` x ) ) Om1 ( 2nd ` x ) ) | 
						
							| 19 |  | cicc |  |-  [,] | 
						
							| 20 |  | c1 |  |-  1 | 
						
							| 21 | 6 20 19 | co |  |-  ( 0 [,] 1 ) | 
						
							| 22 | 17 | csn |  |-  { ( 2nd ` x ) } | 
						
							| 23 | 21 22 | cxp |  |-  ( ( 0 [,] 1 ) X. { ( 2nd ` x ) } ) | 
						
							| 24 | 18 23 | cop |  |-  <. ( ( TopOpen ` ( 1st ` x ) ) Om1 ( 2nd ` x ) ) , ( ( 0 [,] 1 ) X. { ( 2nd ` x ) } ) >. | 
						
							| 25 | 7 9 8 8 24 | cmpo |  |-  ( x e. _V , p e. _V |-> <. ( ( TopOpen ` ( 1st ` x ) ) Om1 ( 2nd ` x ) ) , ( ( 0 [,] 1 ) X. { ( 2nd ` x ) } ) >. ) | 
						
							| 26 | 25 11 | ccom |  |-  ( ( x e. _V , p e. _V |-> <. ( ( TopOpen ` ( 1st ` x ) ) Om1 ( 2nd ` x ) ) , ( ( 0 [,] 1 ) X. { ( 2nd ` x ) } ) >. ) o. 1st ) | 
						
							| 27 |  | cbs |  |-  Base | 
						
							| 28 |  | cnx |  |-  ndx | 
						
							| 29 | 28 27 | cfv |  |-  ( Base ` ndx ) | 
						
							| 30 | 29 5 | cop |  |-  <. ( Base ` ndx ) , U. j >. | 
						
							| 31 |  | cts |  |-  TopSet | 
						
							| 32 | 28 31 | cfv |  |-  ( TopSet ` ndx ) | 
						
							| 33 | 32 4 | cop |  |-  <. ( TopSet ` ndx ) , j >. | 
						
							| 34 | 30 33 | cpr |  |-  { <. ( Base ` ndx ) , U. j >. , <. ( TopSet ` ndx ) , j >. } | 
						
							| 35 | 3 | cv |  |-  y | 
						
							| 36 | 34 35 | cop |  |-  <. { <. ( Base ` ndx ) , U. j >. , <. ( TopSet ` ndx ) , j >. } , y >. | 
						
							| 37 | 26 36 6 | cseq |  |-  seq 0 ( ( ( x e. _V , p e. _V |-> <. ( ( TopOpen ` ( 1st ` x ) ) Om1 ( 2nd ` x ) ) , ( ( 0 [,] 1 ) X. { ( 2nd ` x ) } ) >. ) o. 1st ) , <. { <. ( Base ` ndx ) , U. j >. , <. ( TopSet ` ndx ) , j >. } , y >. ) | 
						
							| 38 | 1 3 2 5 37 | cmpo |  |-  ( j e. Top , y e. U. j |-> seq 0 ( ( ( x e. _V , p e. _V |-> <. ( ( TopOpen ` ( 1st ` x ) ) Om1 ( 2nd ` x ) ) , ( ( 0 [,] 1 ) X. { ( 2nd ` x ) } ) >. ) o. 1st ) , <. { <. ( Base ` ndx ) , U. j >. , <. ( TopSet ` ndx ) , j >. } , y >. ) ) | 
						
							| 39 | 0 38 | wceq |  |-  OmN = ( j e. Top , y e. U. j |-> seq 0 ( ( ( x e. _V , p e. _V |-> <. ( ( TopOpen ` ( 1st ` x ) ) Om1 ( 2nd ` x ) ) , ( ( 0 [,] 1 ) X. { ( 2nd ` x ) } ) >. ) o. 1st ) , <. { <. ( Base ` ndx ) , U. j >. , <. ( TopSet ` ndx ) , j >. } , y >. ) ) |