Metamath Proof Explorer


Definition df-omn

Description: Define the n-th iterated loop space of a topological space. Unlike Om1 this is actually apointed topological space, which is to say a tuple of a topological space (a member of TopSp , not Top ) and a point in the space. Higher loop spaces select the constant loop at the point from the lower loop space for the distinguished point. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Assertion df-omn Ω 𝑛 = j Top , y j seq 0 x V , p V TopOpen 1 st x Ω 1 2 nd x 0 1 × 2 nd x 1 st Base ndx j TopSet ndx j y

Detailed syntax breakdown

Step Hyp Ref Expression
0 comn class Ω 𝑛
1 vj setvar j
2 ctop class Top
3 vy setvar y
4 1 cv setvar j
5 4 cuni class j
6 cc0 class 0
7 vx setvar x
8 cvv class V
9 vp setvar p
10 ctopn class TopOpen
11 c1st class 1 st
12 7 cv setvar x
13 12 11 cfv class 1 st x
14 13 10 cfv class TopOpen 1 st x
15 comi class Ω 1
16 c2nd class 2 nd
17 12 16 cfv class 2 nd x
18 14 17 15 co class TopOpen 1 st x Ω 1 2 nd x
19 cicc class .
20 c1 class 1
21 6 20 19 co class 0 1
22 17 csn class 2 nd x
23 21 22 cxp class 0 1 × 2 nd x
24 18 23 cop class TopOpen 1 st x Ω 1 2 nd x 0 1 × 2 nd x
25 7 9 8 8 24 cmpo class x V , p V TopOpen 1 st x Ω 1 2 nd x 0 1 × 2 nd x
26 25 11 ccom class x V , p V TopOpen 1 st x Ω 1 2 nd x 0 1 × 2 nd x 1 st
27 cbs class Base
28 cnx class ndx
29 28 27 cfv class Base ndx
30 29 5 cop class Base ndx j
31 cts class TopSet
32 28 31 cfv class TopSet ndx
33 32 4 cop class TopSet ndx j
34 30 33 cpr class Base ndx j TopSet ndx j
35 3 cv setvar y
36 34 35 cop class Base ndx j TopSet ndx j y
37 26 36 6 cseq class seq 0 x V , p V TopOpen 1 st x Ω 1 2 nd x 0 1 × 2 nd x 1 st Base ndx j TopSet ndx j y
38 1 3 2 5 37 cmpo class j Top , y j seq 0 x V , p V TopOpen 1 st x Ω 1 2 nd x 0 1 × 2 nd x 1 st Base ndx j TopSet ndx j y
39 0 38 wceq wff Ω 𝑛 = j Top , y j seq 0 x V , p V TopOpen 1 st x Ω 1 2 nd x 0 1 × 2 nd x 1 st Base ndx j TopSet ndx j y