| Step | Hyp | Ref | Expression | 
						
							| 0 |  | comn | ⊢  Ω𝑛 | 
						
							| 1 |  | vj | ⊢ 𝑗 | 
						
							| 2 |  | ctop | ⊢ Top | 
						
							| 3 |  | vy | ⊢ 𝑦 | 
						
							| 4 | 1 | cv | ⊢ 𝑗 | 
						
							| 5 | 4 | cuni | ⊢ ∪  𝑗 | 
						
							| 6 |  | cc0 | ⊢ 0 | 
						
							| 7 |  | vx | ⊢ 𝑥 | 
						
							| 8 |  | cvv | ⊢ V | 
						
							| 9 |  | vp | ⊢ 𝑝 | 
						
							| 10 |  | ctopn | ⊢ TopOpen | 
						
							| 11 |  | c1st | ⊢ 1st | 
						
							| 12 | 7 | cv | ⊢ 𝑥 | 
						
							| 13 | 12 11 | cfv | ⊢ ( 1st  ‘ 𝑥 ) | 
						
							| 14 | 13 10 | cfv | ⊢ ( TopOpen ‘ ( 1st  ‘ 𝑥 ) ) | 
						
							| 15 |  | comi | ⊢  Ω1 | 
						
							| 16 |  | c2nd | ⊢ 2nd | 
						
							| 17 | 12 16 | cfv | ⊢ ( 2nd  ‘ 𝑥 ) | 
						
							| 18 | 14 17 15 | co | ⊢ ( ( TopOpen ‘ ( 1st  ‘ 𝑥 ) )  Ω1  ( 2nd  ‘ 𝑥 ) ) | 
						
							| 19 |  | cicc | ⊢ [,] | 
						
							| 20 |  | c1 | ⊢ 1 | 
						
							| 21 | 6 20 19 | co | ⊢ ( 0 [,] 1 ) | 
						
							| 22 | 17 | csn | ⊢ { ( 2nd  ‘ 𝑥 ) } | 
						
							| 23 | 21 22 | cxp | ⊢ ( ( 0 [,] 1 )  ×  { ( 2nd  ‘ 𝑥 ) } ) | 
						
							| 24 | 18 23 | cop | ⊢ 〈 ( ( TopOpen ‘ ( 1st  ‘ 𝑥 ) )  Ω1  ( 2nd  ‘ 𝑥 ) ) ,  ( ( 0 [,] 1 )  ×  { ( 2nd  ‘ 𝑥 ) } ) 〉 | 
						
							| 25 | 7 9 8 8 24 | cmpo | ⊢ ( 𝑥  ∈  V ,  𝑝  ∈  V  ↦  〈 ( ( TopOpen ‘ ( 1st  ‘ 𝑥 ) )  Ω1  ( 2nd  ‘ 𝑥 ) ) ,  ( ( 0 [,] 1 )  ×  { ( 2nd  ‘ 𝑥 ) } ) 〉 ) | 
						
							| 26 | 25 11 | ccom | ⊢ ( ( 𝑥  ∈  V ,  𝑝  ∈  V  ↦  〈 ( ( TopOpen ‘ ( 1st  ‘ 𝑥 ) )  Ω1  ( 2nd  ‘ 𝑥 ) ) ,  ( ( 0 [,] 1 )  ×  { ( 2nd  ‘ 𝑥 ) } ) 〉 )  ∘  1st  ) | 
						
							| 27 |  | cbs | ⊢ Base | 
						
							| 28 |  | cnx | ⊢ ndx | 
						
							| 29 | 28 27 | cfv | ⊢ ( Base ‘ ndx ) | 
						
							| 30 | 29 5 | cop | ⊢ 〈 ( Base ‘ ndx ) ,  ∪  𝑗 〉 | 
						
							| 31 |  | cts | ⊢ TopSet | 
						
							| 32 | 28 31 | cfv | ⊢ ( TopSet ‘ ndx ) | 
						
							| 33 | 32 4 | cop | ⊢ 〈 ( TopSet ‘ ndx ) ,  𝑗 〉 | 
						
							| 34 | 30 33 | cpr | ⊢ { 〈 ( Base ‘ ndx ) ,  ∪  𝑗 〉 ,  〈 ( TopSet ‘ ndx ) ,  𝑗 〉 } | 
						
							| 35 | 3 | cv | ⊢ 𝑦 | 
						
							| 36 | 34 35 | cop | ⊢ 〈 { 〈 ( Base ‘ ndx ) ,  ∪  𝑗 〉 ,  〈 ( TopSet ‘ ndx ) ,  𝑗 〉 } ,  𝑦 〉 | 
						
							| 37 | 26 36 6 | cseq | ⊢ seq 0 ( ( ( 𝑥  ∈  V ,  𝑝  ∈  V  ↦  〈 ( ( TopOpen ‘ ( 1st  ‘ 𝑥 ) )  Ω1  ( 2nd  ‘ 𝑥 ) ) ,  ( ( 0 [,] 1 )  ×  { ( 2nd  ‘ 𝑥 ) } ) 〉 )  ∘  1st  ) ,  〈 { 〈 ( Base ‘ ndx ) ,  ∪  𝑗 〉 ,  〈 ( TopSet ‘ ndx ) ,  𝑗 〉 } ,  𝑦 〉 ) | 
						
							| 38 | 1 3 2 5 37 | cmpo | ⊢ ( 𝑗  ∈  Top ,  𝑦  ∈  ∪  𝑗  ↦  seq 0 ( ( ( 𝑥  ∈  V ,  𝑝  ∈  V  ↦  〈 ( ( TopOpen ‘ ( 1st  ‘ 𝑥 ) )  Ω1  ( 2nd  ‘ 𝑥 ) ) ,  ( ( 0 [,] 1 )  ×  { ( 2nd  ‘ 𝑥 ) } ) 〉 )  ∘  1st  ) ,  〈 { 〈 ( Base ‘ ndx ) ,  ∪  𝑗 〉 ,  〈 ( TopSet ‘ ndx ) ,  𝑗 〉 } ,  𝑦 〉 ) ) | 
						
							| 39 | 0 38 | wceq | ⊢  Ω𝑛   =  ( 𝑗  ∈  Top ,  𝑦  ∈  ∪  𝑗  ↦  seq 0 ( ( ( 𝑥  ∈  V ,  𝑝  ∈  V  ↦  〈 ( ( TopOpen ‘ ( 1st  ‘ 𝑥 ) )  Ω1  ( 2nd  ‘ 𝑥 ) ) ,  ( ( 0 [,] 1 )  ×  { ( 2nd  ‘ 𝑥 ) } ) 〉 )  ∘  1st  ) ,  〈 { 〈 ( Base ‘ ndx ) ,  ∪  𝑗 〉 ,  〈 ( TopSet ‘ ndx ) ,  𝑗 〉 } ,  𝑦 〉 ) ) |