Database BASIC TOPOLOGY Metric spaces The fundamental group df-pi1  
				
		 
		
			
		 
		Description:   Define the fundamental group, whose operation is given by concatenation
       of homotopy classes of loops.  Definition of Hatcher  p. 26.
       (Contributed by Mario Carneiro , 11-Feb-2015) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-pi1 ⊢    π1    =  ( 𝑗   ∈  Top ,  𝑦   ∈  ∪   𝑗   ↦  ( ( 𝑗   Ω1   𝑦  )  /s ph 𝑗  ) ) )  
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							cpi1 ⊢   π1    
						
							1 
								
							 
							vj ⊢  𝑗   
						
							2 
								
							 
							ctop ⊢  Top  
						
							3 
								
							 
							vy ⊢  𝑦   
						
							4 
								1 
							 
							cv ⊢  𝑗   
						
							5 
								4 
							 
							cuni ⊢  ∪   𝑗   
						
							6 
								
							 
							comi ⊢   Ω1    
						
							7 
								3 
							 
							cv ⊢  𝑦   
						
							8 
								4  7  6 
							 
							co ⊢  ( 𝑗   Ω1   𝑦  )  
						
							9 
								
							 
							cqus ⊢   /s  
						
							10 
								
							 
							cphtpc ⊢   ≃ph  
						
							11 
								4  10 
							 
							cfv ⊢  (  ≃ph 𝑗  )  
						
							12 
								8  11  9 
							 
							co ⊢  ( ( 𝑗   Ω1   𝑦  )  /s ph 𝑗  ) )  
						
							13 
								1  3  2  5  12 
							 
							cmpo ⊢  ( 𝑗   ∈  Top ,  𝑦   ∈  ∪   𝑗   ↦  ( ( 𝑗   Ω1   𝑦  )  /s ph 𝑗  ) ) )  
						
							14 
								0  13 
							 
							wceq ⊢   π1    =  ( 𝑗   ∈  Top ,  𝑦   ∈  ∪   𝑗   ↦  ( ( 𝑗   Ω1   𝑦  )  /s ph 𝑗  ) ) )