Metamath Proof Explorer


Definition df-pi1

Description: Define the fundamental group, whose operation is given by concatenation of homotopy classes of loops. Definition of Hatcher p. 26. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion df-pi1 π 1 = j Top , y j j Ω 1 y / 𝑠 ph j

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpi1 class π 1
1 vj setvar j
2 ctop class Top
3 vy setvar y
4 1 cv setvar j
5 4 cuni class j
6 comi class Ω 1
7 3 cv setvar y
8 4 7 6 co class j Ω 1 y
9 cqus class / 𝑠
10 cphtpc class ph
11 4 10 cfv class ph j
12 8 11 9 co class j Ω 1 y / 𝑠 ph j
13 1 3 2 5 12 cmpo class j Top , y j j Ω 1 y / 𝑠 ph j
14 0 13 wceq wff π 1 = j Top , y j j Ω 1 y / 𝑠 ph j