Description: Define the fundamental group, whose operation is given by concatenation of homotopy classes of loops. Definition of Hatcher p. 26. (Contributed by Mario Carneiro, 11-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-pi1 | |- pi1 = ( j e. Top , y e. U. j |-> ( ( j Om1 y ) /s ( ~=ph ` j ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cpi1 | |- pi1 |
|
1 | vj | |- j |
|
2 | ctop | |- Top |
|
3 | vy | |- y |
|
4 | 1 | cv | |- j |
5 | 4 | cuni | |- U. j |
6 | comi | |- Om1 |
|
7 | 3 | cv | |- y |
8 | 4 7 6 | co | |- ( j Om1 y ) |
9 | cqus | |- /s |
|
10 | cphtpc | |- ~=ph |
|
11 | 4 10 | cfv | |- ( ~=ph ` j ) |
12 | 8 11 9 | co | |- ( ( j Om1 y ) /s ( ~=ph ` j ) ) |
13 | 1 3 2 5 12 | cmpo | |- ( j e. Top , y e. U. j |-> ( ( j Om1 y ) /s ( ~=ph ` j ) ) ) |
14 | 0 13 | wceq | |- pi1 = ( j e. Top , y e. U. j |-> ( ( j Om1 y ) /s ( ~=ph ` j ) ) ) |