Metamath Proof Explorer


Definition df-pi1

Description: Define the fundamental group, whose operation is given by concatenation of homotopy classes of loops. Definition of Hatcher p. 26. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion df-pi1
|- pi1 = ( j e. Top , y e. U. j |-> ( ( j Om1 y ) /s ( ~=ph ` j ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpi1
 |-  pi1
1 vj
 |-  j
2 ctop
 |-  Top
3 vy
 |-  y
4 1 cv
 |-  j
5 4 cuni
 |-  U. j
6 comi
 |-  Om1
7 3 cv
 |-  y
8 4 7 6 co
 |-  ( j Om1 y )
9 cqus
 |-  /s
10 cphtpc
 |-  ~=ph
11 4 10 cfv
 |-  ( ~=ph ` j )
12 8 11 9 co
 |-  ( ( j Om1 y ) /s ( ~=ph ` j ) )
13 1 3 2 5 12 cmpo
 |-  ( j e. Top , y e. U. j |-> ( ( j Om1 y ) /s ( ~=ph ` j ) ) )
14 0 13 wceq
 |-  pi1 = ( j e. Top , y e. U. j |-> ( ( j Om1 y ) /s ( ~=ph ` j ) ) )