Step |
Hyp |
Ref |
Expression |
0 |
|
cpin |
|- piN |
1 |
|
vj |
|- j |
2 |
|
ctop |
|- Top |
3 |
|
vp |
|- p |
4 |
1
|
cv |
|- j |
5 |
4
|
cuni |
|- U. j |
6 |
|
vn |
|- n |
7 |
|
cn0 |
|- NN0 |
8 |
|
c1st |
|- 1st |
9 |
|
comn |
|- OmN |
10 |
3
|
cv |
|- p |
11 |
4 10 9
|
co |
|- ( j OmN p ) |
12 |
6
|
cv |
|- n |
13 |
12 11
|
cfv |
|- ( ( j OmN p ) ` n ) |
14 |
13 8
|
cfv |
|- ( 1st ` ( ( j OmN p ) ` n ) ) |
15 |
|
cqus |
|- /s |
16 |
|
cc0 |
|- 0 |
17 |
12 16
|
wceq |
|- n = 0 |
18 |
|
vx |
|- x |
19 |
|
vy |
|- y |
20 |
|
vf |
|- f |
21 |
|
cii |
|- II |
22 |
|
ccn |
|- Cn |
23 |
21 4 22
|
co |
|- ( II Cn j ) |
24 |
20
|
cv |
|- f |
25 |
16 24
|
cfv |
|- ( f ` 0 ) |
26 |
18
|
cv |
|- x |
27 |
25 26
|
wceq |
|- ( f ` 0 ) = x |
28 |
|
c1 |
|- 1 |
29 |
28 24
|
cfv |
|- ( f ` 1 ) |
30 |
19
|
cv |
|- y |
31 |
29 30
|
wceq |
|- ( f ` 1 ) = y |
32 |
27 31
|
wa |
|- ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) |
33 |
32 20 23
|
wrex |
|- E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) |
34 |
33 18 19
|
copab |
|- { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } |
35 |
|
cphtpc |
|- ~=ph |
36 |
|
ctopn |
|- TopOpen |
37 |
|
cmin |
|- - |
38 |
12 28 37
|
co |
|- ( n - 1 ) |
39 |
38 11
|
cfv |
|- ( ( j OmN p ) ` ( n - 1 ) ) |
40 |
39 8
|
cfv |
|- ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) |
41 |
40 36
|
cfv |
|- ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) |
42 |
41 35
|
cfv |
|- ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) |
43 |
17 34 42
|
cif |
|- if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) |
44 |
14 43 15
|
co |
|- ( ( 1st ` ( ( j OmN p ) ` n ) ) /s if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) ) |
45 |
6 7 44
|
cmpt |
|- ( n e. NN0 |-> ( ( 1st ` ( ( j OmN p ) ` n ) ) /s if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) ) ) |
46 |
1 3 2 5 45
|
cmpo |
|- ( j e. Top , p e. U. j |-> ( n e. NN0 |-> ( ( 1st ` ( ( j OmN p ) ` n ) ) /s if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) ) ) ) |
47 |
0 46
|
wceq |
|- piN = ( j e. Top , p e. U. j |-> ( n e. NN0 |-> ( ( 1st ` ( ( j OmN p ) ` n ) ) /s if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) ) ) ) |