| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cpin |  |-  piN | 
						
							| 1 |  | vj |  |-  j | 
						
							| 2 |  | ctop |  |-  Top | 
						
							| 3 |  | vp |  |-  p | 
						
							| 4 | 1 | cv |  |-  j | 
						
							| 5 | 4 | cuni |  |-  U. j | 
						
							| 6 |  | vn |  |-  n | 
						
							| 7 |  | cn0 |  |-  NN0 | 
						
							| 8 |  | c1st |  |-  1st | 
						
							| 9 |  | comn |  |-  OmN | 
						
							| 10 | 3 | cv |  |-  p | 
						
							| 11 | 4 10 9 | co |  |-  ( j OmN p ) | 
						
							| 12 | 6 | cv |  |-  n | 
						
							| 13 | 12 11 | cfv |  |-  ( ( j OmN p ) ` n ) | 
						
							| 14 | 13 8 | cfv |  |-  ( 1st ` ( ( j OmN p ) ` n ) ) | 
						
							| 15 |  | cqus |  |-  /s | 
						
							| 16 |  | cc0 |  |-  0 | 
						
							| 17 | 12 16 | wceq |  |-  n = 0 | 
						
							| 18 |  | vx |  |-  x | 
						
							| 19 |  | vy |  |-  y | 
						
							| 20 |  | vf |  |-  f | 
						
							| 21 |  | cii |  |-  II | 
						
							| 22 |  | ccn |  |-  Cn | 
						
							| 23 | 21 4 22 | co |  |-  ( II Cn j ) | 
						
							| 24 | 20 | cv |  |-  f | 
						
							| 25 | 16 24 | cfv |  |-  ( f ` 0 ) | 
						
							| 26 | 18 | cv |  |-  x | 
						
							| 27 | 25 26 | wceq |  |-  ( f ` 0 ) = x | 
						
							| 28 |  | c1 |  |-  1 | 
						
							| 29 | 28 24 | cfv |  |-  ( f ` 1 ) | 
						
							| 30 | 19 | cv |  |-  y | 
						
							| 31 | 29 30 | wceq |  |-  ( f ` 1 ) = y | 
						
							| 32 | 27 31 | wa |  |-  ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) | 
						
							| 33 | 32 20 23 | wrex |  |-  E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) | 
						
							| 34 | 33 18 19 | copab |  |-  { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } | 
						
							| 35 |  | cphtpc |  |-  ~=ph | 
						
							| 36 |  | ctopn |  |-  TopOpen | 
						
							| 37 |  | cmin |  |-  - | 
						
							| 38 | 12 28 37 | co |  |-  ( n - 1 ) | 
						
							| 39 | 38 11 | cfv |  |-  ( ( j OmN p ) ` ( n - 1 ) ) | 
						
							| 40 | 39 8 | cfv |  |-  ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) | 
						
							| 41 | 40 36 | cfv |  |-  ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) | 
						
							| 42 | 41 35 | cfv |  |-  ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) | 
						
							| 43 | 17 34 42 | cif |  |-  if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) | 
						
							| 44 | 14 43 15 | co |  |-  ( ( 1st ` ( ( j OmN p ) ` n ) ) /s if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) ) | 
						
							| 45 | 6 7 44 | cmpt |  |-  ( n e. NN0 |-> ( ( 1st ` ( ( j OmN p ) ` n ) ) /s if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) ) ) | 
						
							| 46 | 1 3 2 5 45 | cmpo |  |-  ( j e. Top , p e. U. j |-> ( n e. NN0 |-> ( ( 1st ` ( ( j OmN p ) ` n ) ) /s if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) ) ) ) | 
						
							| 47 | 0 46 | wceq |  |-  piN = ( j e. Top , p e. U. j |-> ( n e. NN0 |-> ( ( 1st ` ( ( j OmN p ) ` n ) ) /s if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) ) ) ) |