Metamath Proof Explorer


Definition df-pin

Description: Define the n-th homotopy group, which is formed by taking the n -th loop space and forming the quotient under the relation of path homotopy equivalence in the base space of the n -th loop space, which is the n - 1 -th loop space. For n = 0 , since this is not well-defined we replace this relation with the path-connectedness relation, so that the 0 -th homotopy group is the set of path components of X . (Since the 0 -th loop space does not have a group operation, neither does the 0 -th homotopy group, but the rest are genuine groups.) (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion df-pin
|- piN = ( j e. Top , p e. U. j |-> ( n e. NN0 |-> ( ( 1st ` ( ( j OmN p ) ` n ) ) /s if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpin
 |-  piN
1 vj
 |-  j
2 ctop
 |-  Top
3 vp
 |-  p
4 1 cv
 |-  j
5 4 cuni
 |-  U. j
6 vn
 |-  n
7 cn0
 |-  NN0
8 c1st
 |-  1st
9 comn
 |-  OmN
10 3 cv
 |-  p
11 4 10 9 co
 |-  ( j OmN p )
12 6 cv
 |-  n
13 12 11 cfv
 |-  ( ( j OmN p ) ` n )
14 13 8 cfv
 |-  ( 1st ` ( ( j OmN p ) ` n ) )
15 cqus
 |-  /s
16 cc0
 |-  0
17 12 16 wceq
 |-  n = 0
18 vx
 |-  x
19 vy
 |-  y
20 vf
 |-  f
21 cii
 |-  II
22 ccn
 |-  Cn
23 21 4 22 co
 |-  ( II Cn j )
24 20 cv
 |-  f
25 16 24 cfv
 |-  ( f ` 0 )
26 18 cv
 |-  x
27 25 26 wceq
 |-  ( f ` 0 ) = x
28 c1
 |-  1
29 28 24 cfv
 |-  ( f ` 1 )
30 19 cv
 |-  y
31 29 30 wceq
 |-  ( f ` 1 ) = y
32 27 31 wa
 |-  ( ( f ` 0 ) = x /\ ( f ` 1 ) = y )
33 32 20 23 wrex
 |-  E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y )
34 33 18 19 copab
 |-  { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) }
35 cphtpc
 |-  ~=ph
36 ctopn
 |-  TopOpen
37 cmin
 |-  -
38 12 28 37 co
 |-  ( n - 1 )
39 38 11 cfv
 |-  ( ( j OmN p ) ` ( n - 1 ) )
40 39 8 cfv
 |-  ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) )
41 40 36 cfv
 |-  ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) )
42 41 35 cfv
 |-  ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) )
43 17 34 42 cif
 |-  if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) )
44 14 43 15 co
 |-  ( ( 1st ` ( ( j OmN p ) ` n ) ) /s if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) )
45 6 7 44 cmpt
 |-  ( n e. NN0 |-> ( ( 1st ` ( ( j OmN p ) ` n ) ) /s if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) ) )
46 1 3 2 5 45 cmpo
 |-  ( j e. Top , p e. U. j |-> ( n e. NN0 |-> ( ( 1st ` ( ( j OmN p ) ` n ) ) /s if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) ) ) )
47 0 46 wceq
 |-  piN = ( j e. Top , p e. U. j |-> ( n e. NN0 |-> ( ( 1st ` ( ( j OmN p ) ` n ) ) /s if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) ) ) )