| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpin |
|- piN |
| 1 |
|
vj |
|- j |
| 2 |
|
ctop |
|- Top |
| 3 |
|
vp |
|- p |
| 4 |
1
|
cv |
|- j |
| 5 |
4
|
cuni |
|- U. j |
| 6 |
|
vn |
|- n |
| 7 |
|
cn0 |
|- NN0 |
| 8 |
|
c1st |
|- 1st |
| 9 |
|
comn |
|- OmN |
| 10 |
3
|
cv |
|- p |
| 11 |
4 10 9
|
co |
|- ( j OmN p ) |
| 12 |
6
|
cv |
|- n |
| 13 |
12 11
|
cfv |
|- ( ( j OmN p ) ` n ) |
| 14 |
13 8
|
cfv |
|- ( 1st ` ( ( j OmN p ) ` n ) ) |
| 15 |
|
cqus |
|- /s |
| 16 |
|
cc0 |
|- 0 |
| 17 |
12 16
|
wceq |
|- n = 0 |
| 18 |
|
vx |
|- x |
| 19 |
|
vy |
|- y |
| 20 |
|
vf |
|- f |
| 21 |
|
cii |
|- II |
| 22 |
|
ccn |
|- Cn |
| 23 |
21 4 22
|
co |
|- ( II Cn j ) |
| 24 |
20
|
cv |
|- f |
| 25 |
16 24
|
cfv |
|- ( f ` 0 ) |
| 26 |
18
|
cv |
|- x |
| 27 |
25 26
|
wceq |
|- ( f ` 0 ) = x |
| 28 |
|
c1 |
|- 1 |
| 29 |
28 24
|
cfv |
|- ( f ` 1 ) |
| 30 |
19
|
cv |
|- y |
| 31 |
29 30
|
wceq |
|- ( f ` 1 ) = y |
| 32 |
27 31
|
wa |
|- ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) |
| 33 |
32 20 23
|
wrex |
|- E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) |
| 34 |
33 18 19
|
copab |
|- { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } |
| 35 |
|
cphtpc |
|- ~=ph |
| 36 |
|
ctopn |
|- TopOpen |
| 37 |
|
cmin |
|- - |
| 38 |
12 28 37
|
co |
|- ( n - 1 ) |
| 39 |
38 11
|
cfv |
|- ( ( j OmN p ) ` ( n - 1 ) ) |
| 40 |
39 8
|
cfv |
|- ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) |
| 41 |
40 36
|
cfv |
|- ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) |
| 42 |
41 35
|
cfv |
|- ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) |
| 43 |
17 34 42
|
cif |
|- if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) |
| 44 |
14 43 15
|
co |
|- ( ( 1st ` ( ( j OmN p ) ` n ) ) /s if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) ) |
| 45 |
6 7 44
|
cmpt |
|- ( n e. NN0 |-> ( ( 1st ` ( ( j OmN p ) ` n ) ) /s if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) ) ) |
| 46 |
1 3 2 5 45
|
cmpo |
|- ( j e. Top , p e. U. j |-> ( n e. NN0 |-> ( ( 1st ` ( ( j OmN p ) ` n ) ) /s if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) ) ) ) |
| 47 |
0 46
|
wceq |
|- piN = ( j e. Top , p e. U. j |-> ( n e. NN0 |-> ( ( 1st ` ( ( j OmN p ) ` n ) ) /s if ( n = 0 , { <. x , y >. | E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) } , ( ~=ph ` ( TopOpen ` ( 1st ` ( ( j OmN p ) ` ( n - 1 ) ) ) ) ) ) ) ) ) |