| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cpin | ⊢  πn | 
						
							| 1 |  | vj | ⊢ 𝑗 | 
						
							| 2 |  | ctop | ⊢ Top | 
						
							| 3 |  | vp | ⊢ 𝑝 | 
						
							| 4 | 1 | cv | ⊢ 𝑗 | 
						
							| 5 | 4 | cuni | ⊢ ∪  𝑗 | 
						
							| 6 |  | vn | ⊢ 𝑛 | 
						
							| 7 |  | cn0 | ⊢ ℕ0 | 
						
							| 8 |  | c1st | ⊢ 1st | 
						
							| 9 |  | comn | ⊢  Ω𝑛 | 
						
							| 10 | 3 | cv | ⊢ 𝑝 | 
						
							| 11 | 4 10 9 | co | ⊢ ( 𝑗  Ω𝑛  𝑝 ) | 
						
							| 12 | 6 | cv | ⊢ 𝑛 | 
						
							| 13 | 12 11 | cfv | ⊢ ( ( 𝑗  Ω𝑛  𝑝 ) ‘ 𝑛 ) | 
						
							| 14 | 13 8 | cfv | ⊢ ( 1st  ‘ ( ( 𝑗  Ω𝑛  𝑝 ) ‘ 𝑛 ) ) | 
						
							| 15 |  | cqus | ⊢  /s | 
						
							| 16 |  | cc0 | ⊢ 0 | 
						
							| 17 | 12 16 | wceq | ⊢ 𝑛  =  0 | 
						
							| 18 |  | vx | ⊢ 𝑥 | 
						
							| 19 |  | vy | ⊢ 𝑦 | 
						
							| 20 |  | vf | ⊢ 𝑓 | 
						
							| 21 |  | cii | ⊢ II | 
						
							| 22 |  | ccn | ⊢  Cn | 
						
							| 23 | 21 4 22 | co | ⊢ ( II  Cn  𝑗 ) | 
						
							| 24 | 20 | cv | ⊢ 𝑓 | 
						
							| 25 | 16 24 | cfv | ⊢ ( 𝑓 ‘ 0 ) | 
						
							| 26 | 18 | cv | ⊢ 𝑥 | 
						
							| 27 | 25 26 | wceq | ⊢ ( 𝑓 ‘ 0 )  =  𝑥 | 
						
							| 28 |  | c1 | ⊢ 1 | 
						
							| 29 | 28 24 | cfv | ⊢ ( 𝑓 ‘ 1 ) | 
						
							| 30 | 19 | cv | ⊢ 𝑦 | 
						
							| 31 | 29 30 | wceq | ⊢ ( 𝑓 ‘ 1 )  =  𝑦 | 
						
							| 32 | 27 31 | wa | ⊢ ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) | 
						
							| 33 | 32 20 23 | wrex | ⊢ ∃ 𝑓  ∈  ( II  Cn  𝑗 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) | 
						
							| 34 | 33 18 19 | copab | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑓  ∈  ( II  Cn  𝑗 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) } | 
						
							| 35 |  | cphtpc | ⊢  ≃ph | 
						
							| 36 |  | ctopn | ⊢ TopOpen | 
						
							| 37 |  | cmin | ⊢  − | 
						
							| 38 | 12 28 37 | co | ⊢ ( 𝑛  −  1 ) | 
						
							| 39 | 38 11 | cfv | ⊢ ( ( 𝑗  Ω𝑛  𝑝 ) ‘ ( 𝑛  −  1 ) ) | 
						
							| 40 | 39 8 | cfv | ⊢ ( 1st  ‘ ( ( 𝑗  Ω𝑛  𝑝 ) ‘ ( 𝑛  −  1 ) ) ) | 
						
							| 41 | 40 36 | cfv | ⊢ ( TopOpen ‘ ( 1st  ‘ ( ( 𝑗  Ω𝑛  𝑝 ) ‘ ( 𝑛  −  1 ) ) ) ) | 
						
							| 42 | 41 35 | cfv | ⊢ (  ≃ph ‘ ( TopOpen ‘ ( 1st  ‘ ( ( 𝑗  Ω𝑛  𝑝 ) ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 43 | 17 34 42 | cif | ⊢ if ( 𝑛  =  0 ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑓  ∈  ( II  Cn  𝑗 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) } ,  (  ≃ph ‘ ( TopOpen ‘ ( 1st  ‘ ( ( 𝑗  Ω𝑛  𝑝 ) ‘ ( 𝑛  −  1 ) ) ) ) ) ) | 
						
							| 44 | 14 43 15 | co | ⊢ ( ( 1st  ‘ ( ( 𝑗  Ω𝑛  𝑝 ) ‘ 𝑛 ) )  /s  if ( 𝑛  =  0 ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑓  ∈  ( II  Cn  𝑗 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) } ,  (  ≃ph ‘ ( TopOpen ‘ ( 1st  ‘ ( ( 𝑗  Ω𝑛  𝑝 ) ‘ ( 𝑛  −  1 ) ) ) ) ) ) ) | 
						
							| 45 | 6 7 44 | cmpt | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( 1st  ‘ ( ( 𝑗  Ω𝑛  𝑝 ) ‘ 𝑛 ) )  /s  if ( 𝑛  =  0 ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑓  ∈  ( II  Cn  𝑗 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) } ,  (  ≃ph ‘ ( TopOpen ‘ ( 1st  ‘ ( ( 𝑗  Ω𝑛  𝑝 ) ‘ ( 𝑛  −  1 ) ) ) ) ) ) ) ) | 
						
							| 46 | 1 3 2 5 45 | cmpo | ⊢ ( 𝑗  ∈  Top ,  𝑝  ∈  ∪  𝑗  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 1st  ‘ ( ( 𝑗  Ω𝑛  𝑝 ) ‘ 𝑛 ) )  /s  if ( 𝑛  =  0 ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑓  ∈  ( II  Cn  𝑗 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) } ,  (  ≃ph ‘ ( TopOpen ‘ ( 1st  ‘ ( ( 𝑗  Ω𝑛  𝑝 ) ‘ ( 𝑛  −  1 ) ) ) ) ) ) ) ) ) | 
						
							| 47 | 0 46 | wceq | ⊢  πn   =  ( 𝑗  ∈  Top ,  𝑝  ∈  ∪  𝑗  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 1st  ‘ ( ( 𝑗  Ω𝑛  𝑝 ) ‘ 𝑛 ) )  /s  if ( 𝑛  =  0 ,  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑓  ∈  ( II  Cn  𝑗 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) } ,  (  ≃ph ‘ ( TopOpen ‘ ( 1st  ‘ ( ( 𝑗  Ω𝑛  𝑝 ) ‘ ( 𝑛  −  1 ) ) ) ) ) ) ) ) ) |