Metamath Proof Explorer


Definition df-om1

Description: Define the loop space of a topological space, with a magma structure on it given by concatenation of loops. This structure is not a group, but the operation is compatible with homotopy, which allows the homotopy groups to be defined based on this operation. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Assertion df-om1 Ω1=jTop,yjBasendxfIICnj|f0=yf1=y+ndx*𝑝jTopSetndxj^koII

Detailed syntax breakdown

Step Hyp Ref Expression
0 comi classΩ1
1 vj setvarj
2 ctop classTop
3 vy setvary
4 1 cv setvarj
5 4 cuni classj
6 cbs classBase
7 cnx classndx
8 7 6 cfv classBasendx
9 vf setvarf
10 cii classII
11 ccn classCn
12 10 4 11 co classIICnj
13 9 cv setvarf
14 cc0 class0
15 14 13 cfv classf0
16 3 cv setvary
17 15 16 wceq wfff0=y
18 c1 class1
19 18 13 cfv classf1
20 19 16 wceq wfff1=y
21 17 20 wa wfff0=yf1=y
22 21 9 12 crab classfIICnj|f0=yf1=y
23 8 22 cop classBasendxfIICnj|f0=yf1=y
24 cplusg class+𝑔
25 7 24 cfv class+ndx
26 cpco class*𝑝
27 4 26 cfv class*𝑝j
28 25 27 cop class+ndx*𝑝j
29 cts classTopSet
30 7 29 cfv classTopSetndx
31 cxko class^ko
32 4 10 31 co classj^koII
33 30 32 cop classTopSetndxj^koII
34 23 28 33 ctp classBasendxfIICnj|f0=yf1=y+ndx*𝑝jTopSetndxj^koII
35 1 3 2 5 34 cmpo classjTop,yjBasendxfIICnj|f0=yf1=y+ndx*𝑝jTopSetndxj^koII
36 0 35 wceq wffΩ1=jTop,yjBasendxfIICnj|f0=yf1=y+ndx*𝑝jTopSetndxj^koII