Description: Define the loop space of a topological space, with a magma structure on it given by concatenation of loops. This structure is not a group, but the operation is compatible with homotopy, which allows the homotopy groups to be defined based on this operation. (Contributed by Mario Carneiro, 10-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-om1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | comi | |
|
1 | vj | |
|
2 | ctop | |
|
3 | vy | |
|
4 | 1 | cv | |
5 | 4 | cuni | |
6 | cbs | |
|
7 | cnx | |
|
8 | 7 6 | cfv | |
9 | vf | |
|
10 | cii | |
|
11 | ccn | |
|
12 | 10 4 11 | co | |
13 | 9 | cv | |
14 | cc0 | |
|
15 | 14 13 | cfv | |
16 | 3 | cv | |
17 | 15 16 | wceq | |
18 | c1 | |
|
19 | 18 13 | cfv | |
20 | 19 16 | wceq | |
21 | 17 20 | wa | |
22 | 21 9 12 | crab | |
23 | 8 22 | cop | |
24 | cplusg | |
|
25 | 7 24 | cfv | |
26 | cpco | |
|
27 | 4 26 | cfv | |
28 | 25 27 | cop | |
29 | cts | |
|
30 | 7 29 | cfv | |
31 | cxko | |
|
32 | 4 10 31 | co | |
33 | 30 32 | cop | |
34 | 23 28 33 | ctp | |
35 | 1 3 2 5 34 | cmpo | |
36 | 0 35 | wceq | |